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Introduction

• Network IDS/IPS backed by machine learning haven’t taken off as

hoped—particularly anomaly-based work.

• Detection problem tricky in this domain:

• Evolving: usage shifts, new protocols, new applications.

• Burstiness, seasonal variation.

• Need for correctness, almost no false-positive tolerance.

• Labelling issues.
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Introduction: Part II

• Classes of problem like flooding-based DDoS attacks manifest as a service

degradation.

• Can these be controlled via feedback loop?

• “Overcome” the difficulties of the detection problem by monitoring and

adapting to performance characteristics and consequences in real-time

• Goal: augment signature-based approaches to provide a last line of defence.
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RL: The Main Idea™

• Underlying theory: systems as (discrete-time) Markov Decision

Processes—states, actions, rewards and transition probabilities.

• I.e., choosing action at from a policy in state st, at ∼ π(st), induces the next

state st+1 and an associated reward rt+1.

• Generalises to value Q(s,a)—how much reward can we eventually expect from

choosing each action currently available?

• Goal: train an agent to make optimal decisions based on observed state.

• Formally, learn a policy to maximise the expected discounted reward1.

1Sutton and Barto, Reinforcement Learning: An Introduction.
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RL: The Main Benefits™

• We can learn the optimal policy without modelling the world ourselves.

• Formulation allows learning adaptively and online, so long as a reward signal

is available.

• Variation in available algorithms, update mechanisms, function

approximations, dependence on value functions, action selection,

exploration...

• Orthogonal concerns, allowing tunable algorithm design.
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Where has RL succeeded in networks?

• Data-driven networking. Effectively applied to intra-domain routing2, task

allocation3, traffic optimisation4 and more, each with general and

domain-specific insights.

• In anomaly detection? Optimising information sharing in distributed

statistical model training5.

2Valadarsky et al., ‘Learning to Route’.
3Mao et al., ‘Resource Management with Deep Reinforcement Learning’.
4Chen et al., ‘AuTO: scaling deep reinforcement learning for datacenter-scale automatic traffic

optimization’.
5Xu, Sun and Huang, ‘Defending DDoS Attacks Using Hidden Markov Models and Cooperative

Reinforcement Learning’.
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Multiagent RL for DDoS prevention

• Reimplementing (and poking holes in) MARL6.

• Network model

• Hosts have a fixed probability of being benign/malicious.

• n hosts per learner, i learners to a team, j teams, one server.

• Per-team rewards: coordinated team learning.

• Action: (per-timestep) choose p, s.t. each learner drops p% of external traffic.

• Implemented in mininet with Ryu controller, traffic generated by replaying

traces.

• Packet content unimportant—only need accurate load stats/queuing behaviour.

• Alternate model featuring live HTTP traffic.

6Malialis and Kudenko, ‘Distributed response to network intrusions using multiagent

reinforcement learning’.
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Multiagent RL for DDoS prevention

• Algorithm: Semi-gradient Sarsa,

linear fn approx, ε-greedy

selection.

• Actions: Drop [0, 10, ... 90]%

upstream traffic.

• State: load vectors of agent and

parents (R4) → tile-coded

(fixed-weight binary vector).

• Rewards: −1 if load > Us, else

fraction of surviving legit traffic.
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Figure 1: Network topology diagram. Red

nodes are external, blue nodes feature in

the state vector. Any packet drop occurs

when forwarding packets from an egress

switch to its parent (intermediate) switch.
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The algorithm?

A little terse, but the main update rule is:

δt = Rt+1 + γ q̂(St+1,At+1,wt)− q̂(St,At,wt), (1a)

wt+1 = wt + αδt∇w q̂(St,At,wt) (1b)

with linear function approximation:

q̂(s,a,w) = w> x(s,a), (1c)

∇w q̂(s,a,w) = x(s,a) (1d)
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The case for finer granularity

• Learner/host ratio (action/host

ratio) affects host QoS.

• Reduced service guarantees by

nature of pushback model.

• Worse with good-faith TCP

congestion avoidance.
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Figure 2: Service quality decreases as

actions become less granular (affecting n

hosts at once).
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The case for finer granularity
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On collateral damage
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Figure 3: Explicit UDP traffic matches

replayed traces (hping3 vs tcpreplay). TCP

traffic (nginx) is severely punished.

• Is the simulation environment

of past work complete?

• No. It’s reliant on a numerical

simulator, derived from

observations of traces.

• UDP benign traffic similar trend

to replayed TCP traces, which

matches the original results.

• Live TCP responds very badly.
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On collateral damage
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And the replication reveals...

• Network topology has no basis in reality—admitted by its own source work7.

• Action granularity causes more collateral damage than we’d like...

• ...and the picture is worse still for legitimate TCP flows.

• Reward function needs a priori knowledge/reliable estimates to learn online.

• But on the plus side, action computation is fast: 80–100µs.

7Mahajan et al., ‘Controlling high bandwidth aggregates in the network’.
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How can we use these observations? (The Immediate Future)

• Why not take actions on a per-flow basis?

• Solves the granularity issues by construction.

• Allows different treatment by flow features (i.e., protocol).

• Need to rethink state space: more costly computation, but we have room to

work in.

• We need any additions to be justified beyond just “more data”, since changes

affect training time and execution time.

• How do we select flows to act upon?
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A candidate state space

Global State The existing state space.

Local State (At least) the following:

• Src/dst IP, Port, Protocol—identification.

• Flow size, duration, rate—standard features.

• Last action taken—encode belief/forgiveness.

• Correspondence ratio—explicitly capture asymmetry.

• ∆rate—model how a flow’s behaviour changes post-action.

• Other features?

And then finding a suitable discretisation...
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The Near Future

• Flow selection strategies (guided action calculation).

• Reward functions without dependence on ahead-of-time knowledge.

• I.e., for certain distributions of communication we might want to maximise link

utilisation in both directions.

• Deriving normal model behaviour from traces.

• We only need to simulate specific behaviour to test these enhancements, but

that can become more representative.

• Investigate other RL algorithms.

• “Deep learning” probably not feasible.

• TD(λ), actor-critic methods.
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The Far Future

• Other problems.

• New action spaces, careful consideration.

• Adversarial capabilities—evasion and poisoning attacks.

• Knowledge-sharing between agents: cost-modelling and optimisation.

• Test deployments in real networks.
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Conclusion

We’ve looked at...

• A quick introduction to RL, and its importance to future

networks for optimisation and control of certain classes

of problem.

• A recent ‘direct control’ approach to intrusion prevention,

and its significant weaknesses.

• Intended improvements specifically targeting these

weaknesses.

Questions?
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