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Introduction

- Network IDS/IPS backed by machine learning haven't taken off as
hoped—particularly anomaly-based work.
- Detection problem tricky in this domain:

- Evolving: usage shifts, new protocols, new applications.

- Burstiness, seasonal variation.

- Need for correctness, almost no false-positive tolerance.
- Labelling issues.
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Introduction: Part I

- Classes of problem like flooding-based DDoS attacks manifest as a service
degradation.

- Can these be controlled via feedback loop?
- “Overcome” the difficulties of the detection problem by monitoring and
adapting to performance characteristics and consequences in real-time

- Goal: augment signature-based approaches to provide a last line of defence.
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RL: The Main Idea™

- Underlying theory: systems as (discrete-time) Markov Decision
Processes—states, actions, rewards and transition probabilities.

- le, choosing action a; from a policy in state s;, a; ~ 7(s;), induces the next

state s;;1 and an associated reward r; 4.
- Generalises to value Q(s,a)—how much reward can we eventually expect from

choosing each action currently available?
- Goal: train an agent to make optimal decisions based on observed state.
- Formally, learn a policy to maximise the expected discounted reward”.

'Sutton and Barto, Reinforcement Learning: An Introduction.
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RL: The Main Benefits™

- We can learn the optimal policy without modelling the world ourselves.
- Formulation allows learning adaptively and online, so long as a reward signal
is available.

- Variation in available algorithms, update mechanisms, function
approximations, dependence on value functions, action selection,
exploration...

- Orthogonal concerns, allowing tunable algorithm design.
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Where has RL succeeded in networks?

- Data-driven networking. Effectively applied to intra-domain routing?, task
allocation?, traffic optimisation* and more, each with general and
domain-specific insights.

- In anomaly detection? Optimising information sharing in distributed
statistical model training®.

2Valadarsky et al, ‘Learning to Route'.
3Mao et al., ‘Resource Management with Deep Reinforcement Learning'.
“Chen et al, ‘AuTO: scaling deep reinforcement learning for datacenter-scale automatic traffic

optimization’.
°Xu, Sun and Huang, ‘Defending DDoS Attacks Using Hidden Markov Models and Cooperative

Reinforcement Learning'.
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Multiagent RL for DDoS prevention

- Reimplementing (and poking holes in) MARL®.
- Network model

- Hosts have a fixed probability of being benign/malicious.

- n hosts per learner, i learners to a team, j teams, one server.

- Per-team rewards: coordinated team learning.

- Action: (per-timestep) choose p, s.t. each learner drops p% of external traffic.
- Implemented in mininet with Ryu controller, traffic generated by replaying

traces.

- Packet content unimportant—only need accurate load stats/queuing behaviour.
- Alternate model featuring live HTTP traffic.

®Malialis and Kudenko, ‘Distributed response to network intrusions using multiagent
reinforcement learning’.
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Multiagent RL for DDoS prevention

- Algorithm: Semi-gradient Sarsa, .

linear fn approx, e-greedy Agent/Egress ./.
. in

selection.

- Actions: Drop [0, 10, ... 90]%
upstream traffic.

Server  Core

Us

- State: load vectors of agent and

parents (R*) — tile-coded Figure 1: Network topology diagram. Red
(ﬁxed—vveight binary vector). nodes are external, blue nodes feature in
the state vector. Any packet drop occurs
when forwarding packets from an egress
switch to its parent (intermediate) switch.

- Rewards: -1if load > Us, else
fraction of surviving legit traffic.
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The algorithm?

A little terse, but the main update rule is:

0t = Reg1 + v G(St41, A1, We) — G(St, A, W), (1a)
Wiy = Wt + adtvwa(St,At, Wt) (1b)

with linear function approximation:
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The case for finer granularity
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- Learner/host ratio (action/host
ratio) affects host QoS.

- Reduced service guarantees by
nature of pushback model.
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Figure 2: Service quality decreases as
actions become less granular (affecting n
hosts at once).
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The case for finer granularity
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Figure 3: Explicit UDP traffic matches
replayed traces (hping3 vs tcpreplay). TCP
traffic (nginx) is severely punished.

On collateral damage

- Is the simulation environment

of past work complete?

- No. It's reliant on a numerical

simulator, derived from
observations of traces.

- UDP benign traffic similar trend

to replayed TCP traces, which
matches the original results.

- Live TCP responds very badly.
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On collateral damage
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And the replication reveals...

- Network topology has no basis in reality—admitted by its own source work’.
- Action granularity causes more collateral damage than we'd like...

- ..and the picture is worse still for legitimate TCP flows.

- Reward function needs a priori knowledge/reliable estimates to learn online.

- But on the plus side, action computation is fast: 80-100 ps.

’Mahajan et al., ‘Controlling high bandwidth aggregates in the network’.
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How can we use these observations? (The Immediate Future)

- Why not take actions on a per-flow basis?

- Solves the granularity issues by construction.
- Allows different treatment by flow features (i.e., protocol).

- Need to rethink state space: more costly computation, but we have room to
work in.

- We need any additions to be justified beyond just “more data”, since changes
affect training time and execution time.

- How do we select flows to act upon?
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A candidate state space

Global State The existing state space.
Local State (At least) the following:

- Src/dst IP, Port, Protocol—identification.

- Flow size, duration, rate—standard features.

- Last action taken—encode belief/forgiveness.

- Correspondence ratio—explicitly capture asymmetry.

- Arate—model how a flow’s behaviour changes post-action.
- Other features?

And then finding a suitable discretisation...
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The Near Future

- Flow selection strategies (guided action calculation).
- Reward functions without dependence on ahead-of-time knowledge.

- l.e, for certain distributions of communication we might want to maximise link
utilisation in both directions.

- Deriving normal model behaviour from traces.

- We only need to simulate specific behaviour to test these enhancements, but
that can become more representative.

- Investigate other RL algorithms.

- “Deep learning” probably not feasible.
- TD()), actor-critic methods.
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The Far Future

- Other problems.
- New action spaces, careful consideration.

- Adversarial capabilities—evasion and poisoning attacks.
- Knowledge-sharing between agents: cost-modelling and optimisation.

- Test deployments in real networks.
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Conclusion

We've looked at...

A quick introduction to RL, and its importance to future
networks for optimisation and control of certain classes
of problem.

A recent ‘direct control’ approach to intrusion prevention,
and its significant weaknesses.

Intended improvements specifically targeting these
weaknesses.

Questions?
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