
GALETTE: a Lightweight XDP Dataplane on your Raspberry Pi

Kyle A. Simpson, Chris Williamson, Douglas J. Paul, Dimitrios P. Pezaros
kylesimpson1@acm.org
FelixMcFelix https://mcfelix.me

13th June, 2023

University of Glasgow

1/15

mailto:kylesimpson1@acm.org
https://github.com/FelixMcFelix
https://mcfelix.me

Securing Sensor & IoT Gateway Networks

• Security – ingress/egress packet processing
by network functions.

• IP layer – Firewalls, DPI, ACLs...
• Middleboxes a bad fit.
• Needs to be reconfigurable – attacks and
security context evolve.

• Ideally in-situ.
• Dynamic/retrofitted.
• But limited space + power in the field.
• Physically vulnerable!

• Sensor networks have low data rates!

2/15

Fast, cheap, and secure IoT Defence – pick 3?

• Single-board compute like RPis are small,
capable, affordable! Cheap!

• See also: NUCs (££), Jetsons (£££).
• Linux-based: Easy(/ier) to target and write
for. We also get kernel network stack
advancements.

• Different CPU architectures.
• Project goals:

• Fast! Low-latency, quickly reconfigurable.
• Secure! efficient NFV code gen from
memory-safe languages.

3/15

GALETTE’s Research Objectives

GALETTE puts effective eBPF packet processing into edge computers.

1. What specialisations does XDP Function Chaining need to best suit SBCs?
• Split userland-XDP pipeline.
• Many userland pipes!

2. How do we make eBPF + native compile from memory-safe systems
languages easy? And portable across ‘native’?

• One Rust program per NF =⇒ eBPF + native.
• Easier, unified API.
• Simple, dynamic chain format.

3. How efficient is it on RPi/NUC?
• Better latency, throughout, power use than AF_PACKET...
• ...without polling.

4/15

Background

eBPF: What and Why?

• Simple register machine VM (user-written)
code, derived from BPF.

• Modern use – Kernel hooks, perf
instrumentation, debugging

• JIT compiled
• Kernel-verified

• Bounds-checked pointer accesses
• Program size limited, no unbounded loops
• Syscalls (eBPF helpers) exposed based on
hook point

5/15

Network stack improvements: XDP

MAC NIC
Memory
& Cache

Driver
Rx/Tx

Kernel
SKB Alloc

Network
Stack

Userland
Code

Offload
C/P4/eBPF

Offload
eBPF (XDP)

Physical Logical

IRQs

Socket

SmartNIC
Offload

Nati
ve X

DP

Generic XDP

AF_XDP

DPDK

• eBPF hook attached to packet
ingress

• Variations on hook
∈ {Offload, Driver, Generic}

• Perf degrades gracefully according
to driver support

• Hook can modify & inspect packets
before forwarding to Linux stack,
sending straight to (another) NIC, or
drop.

• Since 2019: AF_XDP stack bypass!

6/15

Q1: Specialising AF_XDP Function
Chaining for SBCs

The Unique Challenges of SBCs

• Problem: ‘Best’ low latency processing (DPDK) is expensive – CPU, power, HW
support.

• Problem: Mismatch of HW queues to physical cores:
• Soln: load balance and place high-latency NFs in userland.
• ...also, don’t pass packets back to kernel-space.

• Problem: XDP hooks only on ingress (for now):
• Soln: Write an individual NF once, compile for both envs, and replicate NFs as
needed.

7/15

GALETTE Design: Bird’s eye view

ACL
a)

Rate Check
b)

DPI
c)

Stats
d)

ru
st
c
&

Re
dB

PF a) b)

c) d)

RX

a b c

d

DROP

TX

chain.toml

c d D

a b d

RX D TX HW

XDP FAST
PATH

USER
(AARCH64)

BPF Maps
(State)AF_XDP

AF_XDP

REMOTE COMPILE SERVER
SBC TRAFFIC
PROCESSOR

NF Binaries

NF Config

• Two-tier approach—XDP & User.
• Composable NFs – graph structure.
• Critical or high performance NFs go
into XDP:

• Low latency for most packets.
• Chain with XDP tail calls.

• Rare ‘slow-path’ still kernel bypass:
• Expensive & proprietary code.
• Only for candidate attack traffic.

• Reconfigurable, dynamic.
• Remote-compiled.

8/15

How does this differ from other SFC frameworks?

In Security? SafeBricks1, AuditBox2 or similar.

• ...No SGX support in devices of interest.

In eBPF/XDP space? Polycube3!

• Built around datacentres (w/o AF_XDP) – we often have just one HW queue
for a NIC.

• ...so we use more userland pipes to scale to the extra cores we do have.

1Poddar et al., ‘SafeBricks: Shielding Network Functions in the Cloud’.
2Liu et al., ‘Don’t Yank My Chain: Auditable NF Service Chaining’.
3Miano et al., ‘A Framework for eBPF-Based Network Functions in an Era of Microservices’.

9/15

How do we upcall to userland?

• Problem: Can send packet over
AF_XDP, but no context on what the
next (callee) NF is.

• Polycube’s solution doesn’t fit
here: one discrete userland
component per cube, and we have
just one XSK.

• Soln: Adjust headroom of packets,
write in ID and action of caller.

Rx

Tx

Completion

UM
EM NF ID ⊛ Packet Body

Get packet(s)

next_nf(ID,⊛)

nf_dylib(pkt,△)

Cleanup

NF b△

Ca
ll
:
△

′

read()

get(△)

Drop

Tx

Figure 1: Packet processing in the XDP Fast
Path (NF maps omitted).

10/15

Q2: Easy Joint-Compile (eBPF +
Native) from Rust

Skeleton details

• Consistent NF API for both
XDP/userland.

• Rust compiler should be able to
enforce...

• #![forbid(unsafe_code)] (or
similar cargo tooling) on NF
module crates,

• all NF branches specified.
• All compilation on external server.

• SBC too constrained.
• If compile-server is TEE-equipped,
can attest compiler/code etc.
following SotA!

#![no_std]
pub use nf::*;

#[maps]
pub struct Maps { count: (u32, u64) }

pub enum Action { Continue }

pub fn packet<M1>(
mut pkt: impl Packet,
mut maps: Maps<M1>

) -> Action where M1: Map<u32, u64>,
{

if let Some(bytes) = pkt.slice(12) {
// bytes: &mut [u8]
let (src_mac, rest) = bytes.split_at_mut(6);
src_mac.swap_with_slice(&mut rest[..]);

if let Some(n) = maps.count.get(&0) {
maps.count.put(&0, &(n + 1));

}
}

Action::Continue
}

mod.rs: A counting macswap function
11/15

A Service Funtion Chain: security.toml

-- NF & Map definitions --
[functions.access-control.maps]
allow-list = {

type = "lpm-trie",
size = 65535

}

[functions.weak-classifier]
maps = { flow-state = "_" }

[functions.dpi]
maps = { flow-state = "_" }
disable_xdp = true

[maps.flow-state]
type = "hash_map"
size = 65535

-- Chain definition --
[[links]]
from = "rx"
to = ["access-control"]

[[links]]
from = "access-control"
to = ["tx", "weak-classifier"]

[[links]]
from = "weak-classifier"
to = ["tx", "!dpi", "drop"]

[[links]]
from = "dpi"
to = ["tx", "drop"]

12/15

A Peek Behind The Curtain

pub struct PodData {
pub a: u8,
pub b: bool,
pub c: u64,

}

#[maps]
pub struct TestMaps {
plain: (u32, u64),
composite: (u32, PodData),

}

=⇒

pub type NfKeyTy0 = u32;
pub type NfKeyTy1 = u32;
pub type NfValTy0 = u64;
pub type NfValTy1 = PodData;

pub struct TestMaps<NfMapField0, NfMapField1>
where
NfMapField0: Map<u32, u64>,
NfMapField1: Map<u32, PodData>,

{
pub plain: NfMapField0,
pub composite: NfMapField1,

}

And templating code parses any structs tagged #[maps] to count & generate
output crates!

13/15

Q3: Performance

Setup

Baselines

Non-Polling Polling

GALETTE (XDP) GALETTE (all)
GALETTE (AF_XDP) AF_PACKET
GALETTE (Split) DPDK (NUC)

Machines
• Raspberry Pi Model 3B (100Mbit/s),
• Intel i7 NUCs (1 Gbit/s).

NFs
• Macswap,
• Blocking workloads (≤1ms).

Why?
• Power Draw on Pi,
Latency/Throughput for all.

• Different architectures.

14/15

High-level Results

• Pure XDP & AF_XDP more
CPU-efficient than polling baselines
(line-rate on NUC).

• On RPi? Better than AF_PACKET on
all metrics without polling.

• Limited by fused Eth+USB
controller.

• XDP-Userland split prevents packet
stalls with (conditionally) heavy
chains.

• Userland parallelism aids with
more challenging workloads.

More detail? Please check out our paper!

100

1000

10000

100000

0.1 0.5 1 10

M
ac
sw

ap
La
te
nc
y
(µ
s)

Ingest Rate (Mbit/s)

Gal—XDP
Gal—XDP (P)
Gal—AF_XDP

Gal—AF_XDP (P)
AF_PACKET

Figure 2: RPi 64 B packet latencies.

15/15

Takeaways:

• Cheap NFs at the edge: SBCs for packet processing.
• Low-latency and fast: XDP path for majority of traffic,
early & cheap anomaly checks, power savings.

• Secure: Rust NFs means memory safety and performant.
• Easy to write: native and XDP portable NFs in Rust.

Questions?

kylesimpson1@acm.org
FelixMcFelix https://mcfelix.me

15/15

mailto:kylesimpson1@acm.org
https://github.com/FelixMcFelix
https://mcfelix.me

	Background
	Q1: Specialising AF_XDP Function Chaining for SBCs
	Q2: Easy Joint-Compile (eBPF + Native) from Rust crab
	Q3: Performance

