
TruSDEd: Composable, Efficient, Secure XDP Service Function
Chaining on Single Board Computers

Kyle A. Simpson, Chris Williamson, Douglas J. Paul, Dimitrios P. Pezaros
Envelope-open k.simpson.1@research.gla.ac.uk
Github FelixMcFelix GLOBE https://mcfelix.me

8th November, 2022

University of Glasgow

1/17

mailto:k.simpson.1@research.gla.ac.uk
https://github.com/FelixMcFelix
https://mcfelix.me

Securing Sensor & IoT Networks

• Security – ingress/egress packet processing
by network functions.

• IP layer – Firewalls, DPI, ACLs...
• Middleboxes a bad fit.
• Needs to be reconfigurable – attacks and
security context evolve.

• Ideally in-situ.
• Dynamic/retrofitted.
• But limited space + power in the field.
• Physically vulnerable!

2/17

Fast, cheap, and secure IoT Defence – pick 3?

• Single-board compute like RPis are small,
capable, affordable! Cheap!

• See also: NUCs, Jetsons.

• Sensor networks have low data rates; a good
fit.

• Project goals:
• Fast! Low-latency, quickly reconfigurable.
• Secure! Device-level authentication.

3/17

Research Objectives

• Fast reconfiguration:
• State, Program Code, Composition

• Attestation and authentication:
• Right programs on right machine, requested by trusted server.

• ‘Acceptably’ low-latency packet-processing, without pushing CPU/power draw
too high?

• I.e., as low as we can get without polling.
• Easy development and composition.

• One Rust program per NF =⇒ compiled for stack.
• Simple, dynamic chain format.

4/17

Limits of existing solutions

• ‘Best’ low latency processing (DPDK) is expensive – CPU and power.
• ...IFF you have HW support (NUCs)

• SotA in secure processing needs server-only capabilities like trusted
execution environments (TEEs).

• No powerful hardware offloads or acceleration.
• FPGA hats/daughterboards ‘off-path’

• Devices physically vulnerable, no ECC memory.
• ...So, how to reconcile with cheap & portable SBCs?

5/17

What tools do we consistently have?

• SBCs often linux-based
• Easy(/ier) to target and write for.
• Advantage: We also get kernel network stack advancements.

• Can run commodity software with no issues, reasonable target archs like
Aarch64, x86_64, ...

• Includes, principally, eBPF tooling!

6/17

eBPF: What and Why?

• Simple register machine VM (user-written)
code, derived from BPF.

• Modern use – Kernel hooks, perf
instrumentation, debugging

• JIT compiled
• Kernel-verified

• Bounds-checked pointer accesses
• Program size limited, no unbounded loops
• Syscalls (eBPF helpers) exposed based on
hook point

7/17

Network stack improvements: XDP

MAC NIC
Memory
& Cache

Driver
Rx/Tx

Kernel
SKB Alloc

Network
Stack

Userland
Code

Offload
C/P4/eBPF

Offload
eBPF (XDP)

Physical Logical

IRQs

Socket

SmartNIC
Offload

Nat
ive

XDP

Generic XDP

AF_XDP

DPDK

• eBPF hook attached to packet
ingress

• Variations on hook
∈ {Offload, Driver, Generic}

• Perf degrades gracefully according
to driver support

• Hook can modify & inspect packets
before forwarding to Linux stack,
sending straight to (another) NIC, or
drop.

• Since 2019: AF_XDP stack bypass!

8/17

Design: Bird’s eye view

ACL
a)

Rate Check
b)

LOCK DPI
c)

Stats
d)

ru
st

c
&
Re
dB
PF

MICROCHIPa) MICROCHIPb)

MICROCHIPc) MICROCHIPd)

Rx

a b c

d

Drop

Tx
FILE-ALT

chain.toml

c d D

a b d

Rx D Tx Hw

XDP Fast
Path

UserMICROCHIP

(AArch64)

BPF Maps
(State)AF_XDP

AF_XDP

TEE Server
SBC Traffic
Processor

NF Binaries

NF Config

• Two-tier approach—XDP & User.
• Composable NFs – graph structure.
• Critical or high performance NFs go
into XDP:

• Early results – low latency for most
packets.

• Rare ‘slow-path’ still kernel bypass:
• Expensive & proprietary code.
• Only for candidate attack traffic.

• Reconfigurable, dynamic.

9/17

How does this differ from other frameworks?

In Security? SafeBricks1, AuditBox2 or similar.

• ...No SGX support in devices of interest.

In eBPF/XDP space? Polycube3!

• Built around datacentres – we often have just one HW queue for a NIC.

1Poddar et al., ‘SafeBricks: Shielding Network Functions in the Cloud’.
2Liu et al., ‘Don’t Yank My Chain: Auditable NF Service Chaining’.
3Miano et al., ‘A Framework for eBPF-Based Network Functions in an Era of Microservices’.

10/17

Concrete design differences

• Problem: Mismatch of HW queues to physical cores:
• Soln: load balance or place high-latency NFs in userland.
• ...also, don’t pass packets back to k-space.

• Problem: XDP hooks only on ingress (for now):
• Soln: load balance or place high-latency NFs in userland?
• Write an individual NF once, compile for both envs, and replicate NFs as needed.

11/17

Skeleton details

• Consistent NF API for both
XDP/userland.

• Rust compiler should be able to
enforce...

• #![forbid(unsafe_code)] (or
similar cargo tooling) on NF
module crates,

• all NF branches specified.
• All compilation on external server.

• SBC too constrained.
• If compile-server is TEE-equipped,
can attest compiler/code etc.
following SotA!

#![no_std]
pub enum Action {

Left,
Right,
Up,
Down,

}

pub fn packet(bytes: impl Packet) -> Action {
let addr_lsb_idx = 14 +
match pkt.slice_from(12, 2) {

Some(&[0x08, 0x00]) => 19, //v4
Some(&[0x86, 0xDD]) => 39, //v6
_ => {return Action::Left},

};

match pkt.slice_from(addr_lsb_idx, 1)
.map(|v| v[0] % 2) {

Some(0) => Action::Left,
Some(1) => Action::Right,
Some(2) => Action::Up,
Some(3) => Action::Down,
_ => unreachable!(),

}
}

mod.rs: Load balance on dest addr
12/17

A quick code walkthrough...

< In lieu of a demo... >

13/17

How do we upcall to userland?

• Problem: Can send packet over AF_XDP, but no context on what the next
(callee) NF is.

• Polycube’s solution inadequate: one discrete userland component per cube.

• Soln: Adjust headroom of packets, write in ID and action of caller.
• ...might be a memcpy, but ideally only paid on packets who need it.

14/17

Control plane: PUF-based authentication

• How to attest the above code and config is correct?
• TLS w/ pre-shared certs works well.
• But corruption, unplanned expiry possible on field devices.

• Physical Unclonable Functions (PUFs) – input-based device signatures, CRPs.
• Authenticate keys in the wild without root certs.

• Two-way: Client↔ Server!
• Soln: RusTLS modification to declare challenge via X.509 extension, mix
response bits into signature algo input [Zero-knowledge].

• Strong attestation of identities to physical devices.

15/17

Control plane: PUF-based authentication (II)

• RTD-based array designs – quantum
property.

• Behaviour in purple region (NDR
region) physical device-dependent

• Perturbations from ‘ideal’
behaviour can’t be replicated

• N° peaks and perturbations
depend on active devices.

• Challenge bits control used
transistors in circuit

• ∼ Exp amount in n, Large Resp.

01101101....
Challenge: n bits

u8||u8||...||u8
Response: m bits

16/17

...What’s next?

• Currently measuring on RPi and NUC:
• Power, CPU use, ...
• Latency (distribution), Throughput
• Showing usefulness in relocating ‘expensive’ NFs.

• Working out the details on paper for control plane reconfiguration:
• eBPF ProgMaps, etc. allow atomic replacement.
• Still need to codify details on chain & map building to prevent inconsistencies.

17/17

Takeaways:

• Cheap NFs: SBCs for packet processing.
• Low-latency and fast: XDP path for majority of traffic,
early & cheap anomaly checks.

• Secure: PUFs for device, server, and function chain
attestation.

• Ongoing work: complex NFs, power + latency measures,
better characterising PUF behaviour.

Questions?

Envelope-open k.simpson.1@research.gla.ac.uk

Github FelixMcFelix GLOBE https://mcfelix.me 17/17

mailto:k.simpson.1@research.gla.ac.uk
https://github.com/FelixMcFelix
https://mcfelix.me

