
DError: Banishing 
Debug::fmt for 
nested enums

Kyle Simpson
kyle@oxide.computer



Context

● OPTE – our packet processing stack for virtual machines.
○ Kernel module.

● DTrace gives us a lot of value here
○ Statically Defined Tracing (SDT) probes used due to: name 

mangling, unpredictable inlining.
○ SDTs show port final decisions, per-layer processing, parse 

failures, serialisation failures.
● DTrace key for debugging & development.



Processing Result



Parsing Errors



Excess work – dropped packets (underlay)

Suspicious amount of time spent in `bad_packet_probe` · Issue #458 · 
oxidecomputer/opte · GitHub

https://github.com/oxidecomputer/opte/issues/458
https://github.com/oxidecomputer/opte/issues/458


Excess work – the ‘fast’ path

That’s roughly the same time as we take to re-emit a packet!

Suspicious amount of time spent in `bad_packet_probe` · Issue #458 · 
oxidecomputer/opte · GitHub

https://github.com/oxidecomputer/opte/issues/458
https://github.com/oxidecomputer/opte/issues/458


So, what’s happening?

● Calling SDTs themselves is basically free.
● Getting data into the right shape is not.

○ Certainly not for every packet we 
admit.

● Idiomatic Rust errors encourage storing 
chains like this.
○ As operators, root causes are useful!
○ Not #[repr(C)] friendly, and we don’t 

want to manually decode in D script for 
every new enum.



Thinking it through

…it’s unwieldy, but it gives us a lot of information we want.

● Manually decoding in DTrace is out of the question.
○ What happens when we reach another library’s error type?
○ Brittle under change.

● Flattening out into a ‘god error’ similarly brittle.
● No is_enabled for us – we’re in the illumos kernel.

ProcessResult::Drop{reason: Layer {name: “nat”, reason: Rule}} 



Mapping out an error



Mapping out an error



DError

● Any error/result must provide a label, and 
the next node.

● When needed for an SDT, we fill a 
LabelBlock.
○ Compile-time fixed storage.
○ Push discriminant, move to child, write 

leaf data if terminal.
● more denotes a chain deeper than L.
● We can still push our own String at the 

last step.



DError

● Proc-macro for most of our types – 
#[derive(DError)].
○ Automatically generate, e.g., 

c“BadHeader”, child walker for tuple 
variants.

○ #[leaf] annotation for terminal tuple 
variants.

● Made it easy to convert BadHeader(String) 
to its true type: HeaderReadErr.

● Leaf data fn handled explicitly.



DError in practice

● DTrace needed to handle this is slightly 
awkward.
○ But it does not change, and is opaque 

to error implementation.
○ Pattern reusable for all error types.

● Output is readable and captures the full 
chain.



Performance
For unexpected packets:

Plus a minor speed boost for fastpath packets.

Rework bad packet notification for dtrace probes · Pull request #459 
· oxidecomputer/opte · GitHub

https://github.com/oxidecomputer/opte/pull/459
https://github.com/oxidecomputer/opte/pull/459


Post-parser stack rewrite



Future work?

● Variable-length / generic data.
● Encoding max depth into DError trait.

○ Compile-time assurance that LabelBlock is large enough.
● Less &dyn when filling LabelBlocks.

Main lesson: make sure your SDTs have #[repr(C)], cheap inputs.

● See also: OPTE#475.

https://github.com/oxidecomputer/opte/pull/475


Thank you!


