ONLINE RLIN THE
PROGRAMMABLE

DATAPLANE WITH
OPAL

KYLE A. SIMPSON, DIMITRIOS P. PEZAROS
UNIVERSITY OF GLASGOW, SCOTLAND

k.simpson.laresearch.gla.ac.uk

Uaiversity NLETLAB

NETWORKED SYSTEMS RESEARCH LABORATORY

Reinforcement

learning (RL) is a key tool in

data-driven networking for learning to

control systems online. While recent research has
shown how to offload machine learning tasks to
the dataplane (reducing processing latency),
online learning remains an open challenge unless
the model is moved back to a host CPU, harming

latency-sensitive applications. Our poster
introduces OPaL—On Path Learning—the first
work to bring online reinforcementlearningto the
dataplane. OPal makesonlinelearning possiblein
SmartNIC/NPU hardware by returning to classical
RL techniques—avoiding neural networks. This
simplifies update logic, enabling online learning,
and benefits well from the parallelism commonto
SmartNICs. We show that our implementation on
Netronome SmartNIC hardware offers concrete
latency improvements over host execution.

INTRODUCTION

Accelerated ML inference is well-studied...

-DNN accelerators (e.g., BrainWave) allow line rate

inference of trained models with 32X lower batching.

- Cost: O(ms) latency, offline only.

- Dataplane ML converts a trained model » NIC/Switch
friendly data format (e.g., BNN, MATs) to act on per-packet

or per-flow state.
The main research questions:

. Can we have online learning in the dataplane?

- Enable learn online control from NIC-only data without

simulation?

-How do we take advantage of the design of SmartNIC

hardware to do this?

- L.e., many “wimpy” cores, no FPU.

Tiling 1 ’\ PO|ICy

‘I/\

Device Cores/Area allocated to P4

P4 Pipeline
Tiling

c
—
a 2 23 w
D) — (D) (%0}
n L = o 8) ()]
] oo Q. &E = o] oo
o c (3] 3 a o Ll

S

\
, /4
P4 Extern Plugins 1

(State, Action)

| _———— ¢ o o

IN Ring OuT Ring
Config OPal [REPolicy

O
Tiling 2
A

4

Spare Device Cores/Area

Fig. 2 (Algorithm)—Tile-coded RL:
a) is map-reduce,
b) is wait-free for fixed-point tiles,

Fig.1—Design & Interaction
with P4

taking advantage of NPU parallelism.

ARCHITECTURE

Design (fig.1): Perform inference and training using extra device

cores/area, interface with existing control plane via externs.

Algorithm (fig. 2): Classical tile-coding + SARSA are O(us) even
online, enabled on this hardware by fixed-point arithmetic. This
enables a novel, parallel, wait-free algorithm implementation.

Implementation (fig. 3): Inference/update commands pushed
with state data (1, 2), scattered to workers (3), gathered via
shared atomic preference list (4), read out & installed (5—7).

{Rewards, State,
Other Config, Tile Config,
Cores Policy Data}

@

(State, Action)

3 HashMap<
Key,
(State, Act),
>

Controller = Minion++
Minion eqister Minion
Minion Minion
Minion Minion
Minion : Minion

SENNVETS
Key,

Minion Minion Reward,
>

Minion Minion

Minion Minion

Atomic

Writeback Values

local ! Local !
| |

Fig. 3—Implementation on Netronome SmartNIC, signalling cores
(MEs) to split inference/updates across hardware threads.

d
|
Count :
)
)
|
|
)

8 bit

p—d

16 bit —-— 32bit ---- CoOp 232 bitg Float ---

c:f | > Ind (32bit) — - Float (Over) -
9 — e am e ecean

808 - ll = | ,

T 5,08 |

206 | 5 |

3 | =06 ' _,

o p—i 0.4 — . o | :"" """""""""""""" :

E ! .% 0.4 — | ool

= 0.2 - I ~ i |

= = 0.2 | |

U O P | | | | L | S O TR | B II:JI R IR N N R N R

33 335 34 345 35 355 36 36.5 O 0 200 400 600 800 1000

State-Action Latency (us) State-Action Latency (us)

Datatype Machine/FW Workers Throughput (k actions/s) Throughput/core (k actions/s)

Offline Online Offline Online
Float Collector 4 7.673(49) 1.627(31) 1.918(12) —
MidServer 6 5.584(30) 0.791(12) 0.931(5) —
Int32 OPal-Ind 32 172.875(229) 4.333(5) 5.402(7) —
OPal-CoOp 32 29.166(173) 16.141(73) 0.911(5) 0.504(2)

ANALYSIS

From our implementation on Netronome SmartNICs (vs
numpy 32 on i7-6700K), for both online (CoOp, live training)
and offline (Ind, pre-trained) operation of low-latency RL
control:

- Order of magnitude latency improvements at median and
99.99" %ile for both parallel strategies (Ind, Coop).

-Greater throughput (per-core) without reducing P4
processing resources.

- Small effect on cross-traffic processing.
Future Work
. Implementation of OPalL functional units in NetFPGA.

- End-to-end comparison of accuracy, convergence, latency
in AQM and trafficengineering use cases.

