
Reinforcement
learning (RL) is a key tool in

data-driven networking for learning to
control systemsonline.While recent researchhas
shown how to offload machine learning tasks to
the dataplane (reducing processing latency),
online learning remainsanopen challengeunless
the model is moved back to a host CPU, harming
latency-sensitive applications. Our poster
introduces OPaL—On Path Learning—the first
worktobringonlinereinforcement learningtothe
dataplane.OPaLmakesonline learningpossible in
SmartNIC/NPUhardwareby returning to classical
RL techniques—avoiding neural networks. This
simplifies update logic, enabling online learning,
andbenefitswell fromtheparallelismcommonto
SmartNICs.We show that our implementation on
Netronome SmartNIC hardware offers concrete

latency improvements over host execution.

Online RL in the
Programmable
Dataplane with
OPaL
Kyle A. Simpson, Dimitrios P. Pezaros
University of Glasgow, Scotland
k.simpson.1@research.gla.ac.uk

AcceleratedML inference iswell-studied…
• DNN accelerators (e.g., BrainWave) allow line rate
inference of trainedmodels with 32x lower batching.

• Cost: O(ms) latency, offline only.

• Dataplane ML converts a trained model → NIC/Switch
friendly data format (e.g., BNN,MATs) to act on per-packet
or per-flow state.

Themain research questions:
• Canwe have online learning in the dataplane?

• Enable learn online control from NIC-only data without
simulation?

• How do we take advantage of the design of SmartNIC
hardware to do this?

• I.e.,many “wimpy” cores, no FPU.

Introduction

Design (fig.1):Perform inference and trainingusing extra device
cores/area, interfacewith existing control plane via externs.

Algorithm (fig. 2): Classical tile-coding + SARSA are O(μs) even
online, enabled on this hardware by fixed-point arithmetic. This
enables a novel, parallel,wait-free algorithm implementation.

Implementation (fig. 3): Inference/update commands pushed
with state data (1, 2), scattered to workers (3), gathered via
shared atomic preference list (4), read out& installed (5–7).

Architecture

From our implementation on Netronome SmartNICs (vs
numpy f32 on i7-6700K), for both online (CoOp, live training)
and offline (Ind, pre-trained) operation of low-latency RL
control:

• Order ofmagnitude latency improvements atmedian and
99.99th%ile for both parallel strategies (Ind, Coop).

• Greater throughput (per-core) without reducing P4
processing resources.

• Small effect on cross-traffic processing.

FutureWork
• Implementation of OPaL functional units in NetFPGA.

• End-to-end comparison of accuracy, convergence, latency
in AQMand traffic engineering use cases.

Analysis

Config

Count

Values
Atomic

Writeback
Policy

Local
CLS

Local
CTM IMEM

{Rewards, State,
Config, Tile Config,

Policy Data}
(State, Action)

In Ring

HashMap<
Key,
(State, Act),
>

HashMap<
Key,
Reward,
>

Out Ring

Controller

Minion

Minion

Minion

Minion

Minion

Minion

Minion

ME 0

Si
gn

al

Minion++

Minion

Minion

Minion

Minion

Minion

Minion

Minion

ME 1

Si
gn

al

NN
Register

NN
Register

EMEM

OPaL
Cores

Other
Cores
/FUs

...

1

2

3 3

4

5

6

7

Fig. 3—Implementation onNetronomeSmartNIC, signalling cores
(MEs) to split inference/updates across hardware threads.

0

0.2

0.4

0.6

0.8

1

33 33.5 34 34.5 35 35.5 36 36.5C
um

ul
at
iv
e
Fr
eq
ue
nc
y

State-Action Latency (µs)

8 bit 16 bit 32 bit

0
0.2
0.4
0.6
0.8
1

0 200 400 600 800 1000C
um

ul
at
iv
e
Fr
eq
ue
nc
y

State-Action Latency (µs)

CoOp (32 bit)
Ind (32 bit)

Float
Float (Over)

Pa
rs
er

In
gr
es
s

D
ep

ar
se
r

Bu
ffe

r&
Re

pl
ica

tio
n

Pa
rs
er

Eg
re
ss

D
ep

ar
se
r

Ou
tp
ut

Q
ue

ue

P4 Pipeline

Pkt
in

Pkt
out

Device Cores/Area allocated to P4

Spare Device Cores/Area

P4 Extern Plugins

(Via Actions)

In Ring Out Ring

OPaL RL Policy

Rewards,
State,
Config

(State, Action)

Fig. 1—Design& Interaction
withP4

Tiling 1

Tiling 2

s

1

1

0

Policy

Tiling 1

Tiling 2

· · ·

a = [· · ·]

Fig.2 (Algorithm)—Tile-codedRL:
a) ismap-reduce,

b) iswait-free forfixed-point tiles,
takingadvantage ofNPUparallelism.

Datatype Machine/FW Workers Throughput (k actions/s) Throughput/core (k actions/s)

Offline Online Offline Online

Float Collector 4 7.673(49) 1.627(31) 1.918(12) —
MidServer 6 5.584(30) 0.791(12) 0.931(5) —

Int32 OPaL-Ind 32 172.875(229) 4.333(5) 5.402(7) —
OPaL-CoOp 32 29.166(173) 16.141(73) 0.911(5) 0.504(2)


