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ABSTRACT

Modern computer vision research depends upon complex vector-
space models and machine learning techniques, which can be
hard for humans to make sense of. If suitable graph mod-
els exist for these problems, then we benefit triply: problem
instances become more intuitive, it becomes easier to assess
model robustness, and we may use standard graph search and
similarity algorithms for classification with little modification.
I show the ineffectiveness of current general image graph
models against these known similarity metrics, and propose
two new models for glyph image modelling. These models are
found to underperform compared to the state-of-the-art and
computing exact graph similarity is found to be a poor fit for
classification tasks, yet the intuitive nature of the models is
shown to both allow and inform easy model enhancement.

1. INTRODUCTION

Research into computer vision tasks, such as image and ob-
ject recognition, is currently dominated by the use of machine
learning and vector-space models, while graph encodings are
comparatively less well-explored. Machine learning meth-
ods typically rely on these vector-space models, applying
statistical inference from training data to teach classifiers
how to recognise the desired elements or features from an
image—and have become popular due to their versatility,
effectiveness and accuracy across many problem domains.
Some of these vector-space models take a keypoint approach,
capturing the area around high-contrast regions in images
as salient features, or might examine codings which describe
an image’s contents in a dense and very low-level fashion.

In many cases it can be hard to reason about such models’
robustness or sensitivity to different phenomena. In a ma-
chine learning context, for instance, these are often a function
of both the training data and the model itself. The parame-
ters learned by these models aren’t structured in a way that
allows humans to easily intuit what the model has learned or
to comment on the system’s correctness, and it can be diffi-
cult to discern why a particular image might be misclassified.
Recent work into adversarial images [12] has confirmed this,
given that interference can lead to classifications contrary to
image content.

Graph models, long-explored in discrete mathematics, pro-
vide a simpler way of visualising problems. Systems are
broken down into vertices and edges between vertex pairs—
capturing the relationships between objects or key features
within a scene. For many domains, this is an intuitive and
effective representation, encoding rich semantics in a very
natural way which enjoys use in computational chemistry
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Figure 1: An example of the expected similarity be-
tween two views of the same scene. Similar ob-
jects and scenes should theoretically generate similar
graphs after a suitable transformation, enabling recog-
nition across images.

[9, 11, 21], biology [13], and graph database analysis. Fur-
thermore, exact graph search and similarity metrics (e.g.
the subgraph isomorphism and maximum common subgraph
problems, respectively) are well-understood and an area of
continual research in the field of algorithms.

The main aim of this paper is to explore the hypothesis
that, after suitable transformation, image similarity corre-
sponds to graph similarity according to these known metrics;
fig. 1 gives a rough illustration of the concept. In particu-
lar, this work focuses on character analysis and recognition,
considering both the performance of graph models within
a domain alongside the usefulness of any chosen analytic
techniques. By investigating these questions, this paper
contributes:

• A demonstration of the shortcomings of existing image
graph work for generic matching (Section 3), by at-
tempting similarity computation on graphs built using
common techniques from the literature. This weakness
motivates the development of new modelling strategies.

• An algorithm for converting binary images into graphs,
designed for use with images containing a clear path
structure, such as character glyphs (Section 4). Path
curvature is the core feature for matching.

• A matching algorithm for these graphs, produced by
modifying the k ↓ [14] procedure (Section 5). This
modified algorithm is used to compute graph similarity
as part of a k-Nearest Neighbours classifier.
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• An alternative graph model, capturing angle path dy-
namics using a “dual graph”-like transformation (Sec-
tion 4.2). This model arises in response to a perceived
weakness in the first algorithm; this discovery is aided
by the intuitive structure of the original graph model.

• An experimental evaluation of the matching accuracy
of these models against datasets of handwritten and
machine-generated character glyphs (Section 6).

2. GRAPHS, SEARCH AND SIMILARITY

First, we must define graphs more precisely. An undirected
graph G may be written G = (V,E) for a vertex set V and
an edge set E ⊆ {{u, v} : u, v ∈ V }, i.e. each edge e ∈ E
is a set of two vertices from V . To access these sets, I
define the functions V(G) = V and E(G) = E to retrieve the
vertex and edge set respectively. For some u, v ∈ V , we may
write u ∼G v to mean u and v are adjacent vertices in G
({u, v} ∈ E), and use NG(u) to refer to u’s neighbourhood—
the set of all vertices in V \{u} adjacent to u in G. This
definition allows loops, e.g. u ∼G u with the caveat that
u /∈ NG(u). Additionally, the order of G refers to the count
of G’s vertices (Ord(G) = |V |), and the size of G refers to
the count of G’s edges (Sz(G) = |E|). Where G is clear from
context, the relevant subscripts will be elided.

The graphs produced by the techniques I outline are at-
tributed undirected multigraphs: vertices and edges may have
labels, and each pair of vertices may share multiple edges.
Given domains Lv, Le for vertex and edge labels respectively,
we redefine G = (V,E, `v, `e) for a vertex set V , an edge
set E, a vertex label mapping `v : V → Lv and an edge
mapping `e : E → {({u, v}, l) : u, v ∈ V, l ∈ Le}. We can
succinctly describe the edges between any u, v ∈ V with a
sorted (non-decreasing) sequence of labels, seqG(u, v). This
allows us to define basic adjacency, and thus the basic neigh-
bourhood: u ∼G v ⇐⇒ | seqG(u, v)| ≥ 1. For matching
such graphs, we require three new neighbourhood definitions.
Given a sorted label sequence s, we may define the exact
neighbourhood N=

s,G(u) as the set of all v ∈ NG(u) such that

seqG(u, v) = s. The sufficient neighbourhood N<
s,G(u) is the

set of all v ∈ NG(u) where we may map each label in s to
a distinct label of equal value in seqG(u, v)—we say that
s 4 seqG(u, v) if such a mapping exists. Finally, the overlap
neighbourhood N◦s,G(u) is the set of all v ∈ NG(u) where at
least one label in s may be mapped to a label of equal value
in seqG(u, v). For simplicity, I shall define the core search
and similarity problems using undirected graphs.

Transformation from an image to a graph will create a
graph whose structure corresponds to the image’s content
and invariants. If an image I contains an object, it is thus
reasonable to assume that the graph produced from an image
of only that object should be reproduced within I’s graph
model—this may be useful when e.g., searching for a road
sign in a view seen by an autonomous car. This form of
graph search is known as the subgraph isomorphism problem
(SIP), which is concerned with finding the exact structure
of some pattern graph P = (VP , EP) within a target graph
T = (VT , ET )—an example is provided in fig. 2. More
precisely, for the non-induced variant of SIP the problem is
to find an injective mapping i : VP → VT such that ∀u, v ∈
VP , i(u) 6= i(v) and u ∼P v ⇒ i(u) ∼T i(v), preserving
adjacency and ensuring no two vertices of P are mapped
to the same vertex of T . The induced variant additionally
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Figure 2: An example of the subgraph isomorphism
problem between two graphs P and T . P’s embed-
ding within T is highlighted in orange—this is a valid
matching in both the induced and non-induced SIP
variants.

imposes that ∀u, v ∈ VP , u �P v ⇒ i(u) �T i(v), ensuring
that non-adjacent vertices in P must remain non-adjacent in
the embedding in T . While SIP is NP-Complete [5, 10], with
modern algorithms such as McCreesh and Prosser’s Glasgow
solver it is computationally feasible for graphs on the order
of several thousand vertices [19]. Trends in recent work
have focused on increasing performance for larger instances
through more costly filtering and pre-processing [28, 1, 19]—
for this reason, older approaches such as VF2 [6] remain
competitive on smaller instances [20].

In reality, elements of an object’s graph structure may not
be reproduced in the graph of an embedding due to either
occlusion, image distortion or object scale. In this case, it
is worthwhile to examine how much two image graphs have
in common to identify common elements and substructures.
Between two graphs P and T this is known as the maximum
common subgraph problem (MCS), which is the search for the
largest subgraph of P which is isomorphic to some subgraph
of T as in SIP. Figure 3 offers an example instance. While this
problem as described is NP-Hard, it is considerably harder in
practice than SIP—the current state-of-the-art, McSplit, can
operate on graphs of order 35–40 [33], where other approaches
are limited to around 30 vertices. Even so, this approach
applies only to the induced variant of MCS and largely
prevents the addition of side constraints. For such flexibility
we must consider either k ↓ [14], a repeated application of
the Glasgow SIP solver excluding k vertices, or a max-clique-
based approach using the association graph encoding [18].
In this regard there is a trade-off to be made: while the
clique-based approach still achieves the best performance
on labelled instances [33], k ↓ requires far less memory to
process high-order graphs. I choose to examine and modify
k ↓ for these reasons, but this still requires that the order of
any graphs must remain small to perform occlusion-robust
matching with this technique.

By computing similar structures between any two graphs
as above, we may then quantify how similar they are by
considering the order of the MCS. This is in turn a key
part of establishing how dissimilar a pair of graphs are,
and given that MCS order does not take into account the
sizes of P or T such a metric is more desirable for global
classification. We may then use the MCS to compute the
number of discrete changes needed to transform P into T—
the graph edit distance (GED) [2]. For classification purposes,
I consider a simplified expression which disregards edge costs:

GED(P, T ) = Ord(P) + Ord(T )− 2 Ord(MCS(P, T ))

3. ON EXISTING IMAGE GRAPH MODELS

For graph modelling of generic images, present techniques
typically build graphs by applying the Delaunay triangula-
tion [8] to a set of interest pixels located within an image.
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Figure 3: An example of the maximum common sub-
graph problem between two graphs P and T . The
MCS’s embedding within both P and T is highlighted
in orange. Note that this embedding is not unique,
although for this choice of P and T the MCS itself is.

This process places edges between vertices with coordinate
labels to construct a face-connected plane graph; specifically,
where each face is a triangle. Crucially, this mesh is sub-
ject to one key criterion designed to minimise the incidence
of sliver triangles: no point may lie inside the circumcircle
of any produced triangle. Efficient algorithms exist for its
computation [35, 27]. This avenue is explored briefly by
Damiand et al. [7], and expanded upon by Samuel, Higuera,
and Janodet to make use of structural cues provided by
image segmentation algorithms [26]. The authors of these
approaches assess the effectiveness of their models by either
searching for an image cropping within itself (using submap
isomorphism) or by quantifying the “loss” incurred by recon-
struction from the generated graph. In this regard much
is made of matching of graphs within an image, and not
between images; making it unclear whether any discrimina-
tive features are captured or modelled in a way that allows
matching using MCS algorithms.

To investigate this, I implemented Samuel, Higuera, and
Janodet’s algorithm in Python, using scikit-image1 func-
tions for segmentation and interest pixel detection. Two
experiments were performed:

1. Establishing whether graphs of a test image from the
Berkeley Segmentation Dataset [17] (fig. 4a) before and
after 180◦ rotation were isomorphic, and measuring
their similarity if not.

2. Measuring the similarity between two adjacent frames
of Sergio Leone’s The Good, the Bad and the Ugly
(figs. 4b and 4c).

As the image graphs were expected to be high-order, vertices
were labelled with their (x, y) image locations to augment
the k ↓ procedure with Euclidean distance filtering to make
matching feasible—vertices could be mapped to one another
if their distance was smaller than 1 for the first, or 5 for the
second experiment. These distances were chosen due to the
expected similarity in each case—while the first experiment
governs essentially identical images (once positions have been
corrected to negate the transform), in the second case mild
variance is expected.

Experiment Except-k Ord(MCS) Overlap (%)

1 [61, 111] [134, 184] 54.6–72.2
2 [38, 217] [47, 226] 18.1–86.9

Table 1: Observed similarity bounds between real-
world images.

1http://scikit-image.org/

Figures 5a and 5b show that the expected isomorphism in
the first experiment was not observed—both graphs have dif-
ferent order and size. After 5 days runtime, the graph order
was not exactly identified in either case, but table 1 shows the
obtained bounds. Due to the difficulty of finding an optimal
k, both of these results have an unacceptably high degree of
uncertainty—we cannot draw any conclusive answers on the
actual graph similarity for this reason. The level of uncer-
tainty here is strongly tied to the level of filtering provided
in each experiment: a higher distance threshold gives more
candidate mappings for each vertex, and so weaker filtering.
The bound in the first experiment is, however, low enough
for two identical images to assert that this transformation
is not isotropic. This heavily indicates that the approach’s
validity and sensitivities depend upon the choice of interest
pixel detector. Furthermore, the presence of more unique
structures would improve matching performance—I believe
that the structure offered by the Delaunay triangulation is
too uniform, and thus hinders our ability to compute the
MCS. Aside from this, the reliance on perfect segmenta-
tion (which is available within the Berkeley Segmentation
Dataset) is clear—the second experiment required significant
manual parameter tuning to acquire a reasonable segmenta-
tion, despite the exceptionally clear foreground-background
distinction. Most pressingly, this shows that the current work
is wholly inappropriate for the task of image matching with
currently available tools: extremely high-order graphs with
little discriminative structure are produced, making analysis
computationally infeasible.

4. ALGORITHMS FOR MODELLING TEXT

There is a clear mismatch between current models for broad
matching and the capabilities of modern algorithms. To in-
vestigate the value of MCS in image graph matching we must
consider a smaller problem domain where instances have a
few clear features. To this end, I choose to examine character
and handwriting analysis—where the flow and form of glyphs
can be captured by measuring the topological relationships
between disconnected components, path curvature between
keypoints and some sense of orientation. Ideally, this should
capture feature locations and relationships in a somewhat
scale-invariant manner.

Algorithm 1: Graph modelling of glyphs

1 GlyphGraph(Image I, Float curve thres)
2 begin
3 V ← {}, E ← []
4 B ← I after padding, thresholding and binarisation
5 S ← B after skeletonisation
6 C ← S after connected component labelling
7 n = max(C)
8 Keyps,Ends ← FindKeypoints(C, S)
9 Starts ← []

10 IdentifyPaths(C, S, n, Keyps, Ends, Starts, V , E)
11 OrientGraph(V , E)
12 ComponentTopology(n, Keyps, Ends, Starts, V , E)
13 return V,E

4.1. Graphs from path curvature

For this task, I pose GlyphGraph (algorithm 1) as a solu-
tion. An input pixel image is first preprocessed by padding,
greyscale conversion, thresholding and binarisation. It is
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(a) BSD test image (b) Film frame 1 (c) Film frame 2

Figure 4: Images used for evaluation of Samuel, Higuera, and Janodet’s [26] approach.

(a) BSD test image,
normal. |V | = 245,

|E| = 707.

(b) BSD test image, 180◦

rotation. |V | = 247,
|E| = 705.

(c) Film frame 1.
|V | = 264, |E| = 755.

(d) Film frame 2.
|V | = 260, |E| = 743.

Figure 5: Graph output after boundary walking and Delaunay triangulation. |V | and |E| denote the vertex count
and edge count, respectively.

Algorithm 2: Keypoint location for algorithm 1

1 FindKeypoints(Image C, Image S)
2 begin
3 Keyps,Ends ← {}
4 foreach labelx,y ∈ C do
5 if labelx,y < 1 then
6 continue

7 degree ← n◦ contiguous blocks in NhoodS(x, y)
8 if degree = 1 then
9 Ends ← Ends ∪ {(x, y, labelx,y)}

10 else if degree > 2 then
11 Keyps ← Keyps ∪ {(x, y, labelx,y)}

12 return Keyps, Ends

Algorithm 3: Path location and labelling for algorithm 1

1 IdentifyPaths(Image C, Image S, Int n, PointSet Keyps,
PointSet Ends, PointList Starts, VertexSet V , EdgeList E)

2 begin
3 for i← 1; i ≤ n; i++ do
4 PathPoints = {(x, y, l) ∈ Keyps ∪ Ends : l = i}
5 if |PathPoints| > 1 then
6 Starts[i]← any p ∈ PathPoints
7 else
8 Starts[i]← topmost, leftmost (x, y, l) with

l = C[x, y] = i

9 Paths ← Traverse(Starts[i],PathPoints, S)
10 foreach (pstart , pend , dirstart , dirend ) ∈ Paths do
11 Splits ← IPAN(S, pstart , pend )
12 for j ← 0; j < |Splits| − 1; j++ do
13 p1 ← Splits[j]
14 p2 ← Splits[j + 1]
15 d← dist(p1, p2)
16 t← p dist(S, pstart , pend , dirstart , p1, p2)
17 V ← V ∪ {p1, p2}
18 if curve thres ∗ d < t then
19 label ← CURVE
20 else
21 label ← LINE

22 E. append((p1, p2, label))

Algorithm 4: North orientation for algorithm 1

1 OrientGraph(VertexSet V , EdgeList E)
2 begin
3 zero ← (0, 0)
4 north ← null
5 foreach v ∈ V do
6 if north = null ∨ dist(v, zero) < dist(north, zero)

then
7 north ← v

8 if north 6= null then
9 V ← V ∪ {zero,north}

10 E. append((zero,north, NORTH))

Algorithm 5: Topology labelling for algorithm 1

1 ComponentTopology(Int n, PointSet Keyps, PointSet Ends,
PointList Starts, VertexSet V , EdgeList E)

2 begin
3 for i← 1; i ≤ n; i++ do
4 eps ← [(x, y, l) ∈ Ends : l = i]
5 if |eps| = 0 then eps ← [(x, y, l) ∈ Keyps : l = i]
6 if |eps| = 0 then eps ← [Starts[i]]
7 foreach (x, y, l) ∈ eps do
8 p← (x, y)
9 best ← null

10 foreach {(x′, y′, l′) ∈ Keyps ∪ Ends : l′ 6= i} do
11 v ← (x′, y′)
12 if best = null ∨ dist(v, p) < dist(best , p) then
13 best ← v

14 if best 6= null then
15 V ← V ∪ {p, best}
16 E. append((p, best , NEIGHBOUR))
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(a) Endpoint (b) Regular (c) Keypoint

Figure 6: Endpoint and keypoint visualisation. These
diagrams represent labellings of contiguous blocks
within neighbourhoods of pixels from a path, as in
line 7 of algorithm 2—each (non-black) colour repre-
sents a different block, and the degree of each is the
count of “colours”. These have degrees 1, 2, and 3 re-
spectively, which are used in labelling the black pixel
at the centre.

Glyph Image Skeleton

Figure 7: Skeletonisation processes a binary image by
converting regions of arbitrary thickness into 1-pixel
thick paths, preserving 8-wise connectivity.

then skeletonised to convert the image into a set of 1-pixel-
thick paths, assigning disconnected paths with different labels
(lines 4–7); fig. 7 illustrates what is meant by skeletonisation.
A preliminary set of interest points is extracted from the
image, split into two categories: endpoints are pixels in the
image skeleton with just one contiguous component in their
neighbourhood, while keypoints are junctions with at least 3
such components (algorithm 2 lines 1–12, fig. 6).

Algorithm 3 then uses these keypoints to detect and label
paths within components. Per component, a depth-first
traversal is performed to discover the paths between all
constituent interest points (line 9); this traversal prioritises
moves to regular pixels over interest points, allowing interest
points to be revisited since a path may start and end at
the same point. In line 11, these paths are then subdivided
using Chetverikov’s IPAN algorithm [4] to detect locations of
high curvature (using the default parameters provided in the
paper). This is a two-pass approach, first testing each point
p along a path for the existence of an admissible triangle
built from p, one point preceding p, and one point succeeding
p in the path—these points must be within a distance range
from p, and the internal angle α at p must be sufficiently
small. If such a triangle exists, p is marked as high-curvature
and its sharpness π − |α| is recorded. These locations are
then refined by performing non-maximal suppression with
the observed sharpness values, leaving only the local maxima
marked as splitting points.

Lines 12–22 then classify each path segment: if for a path
segment with length t and distance d between that segment’s
endpoints d ∗ curve thres < t, then we label it as a CURVE,
otherwise it is labelled as a LINE. I consider curve thres = 1.5
as the default value. An edge is then added to the graph
between these two points, with the given label—modelling
path curvature features as desired.

To establish and model orientation, algorithm 4 inserts a
new vertex at (0, 0), and places an edge between this vertex
and the closest interest point found in the image with a
unique NORTH label. Algorithm 5 then captures the topo-
logical relationship between components. Per-component,
eps is chosen to be either the set of that component’s end-
points, keypoints or its sole start point (in decreasing order
of preference). An edge, labelled NEIGHBOUR, is then placed
between each point in eps and the nearest interest point in
another component. Note that when outputting the final
graph, vertex position data is discarded with the goal of
providing scale-invariance.

An example walkthrough Consider a rough visual ex-
ample aided by fig. 8—the transformation of an image of
the character ‘Θ’ into a graph. Firstly, our image (fig. 8a)
undergoes preprocessing and skeletonisation to capture the
glyph’s paths (fig. 8b). This binary skeleton then undergoes
connected component labelling, and the algorithm identifies
two main components present in the image: an outer oval
component (orange), and an inner line component (lavender)
(fig. 8c).

Each pixel is then examined and is classified as either an
endpoint, keypoint or regular pixel according to its neigh-
bourhood (fig. 8d). The line component here features two
endpoints, which are detected from their neighbourhoods.
In contrast, within the oval component every pixel has two
contiguous blocks within its 3× 3 neighbourhood, and so all
are deemed to be “regular”.

Paths between keypoints within each component are then
traced out and labelled to produce the first set of edges
(fig. 8e). The inner component is traversed simply, starting
at the left endpoint and ending at the right—the path is not
split any further, and is classified as a LINE. As the outer
component has no interest points, traversal begins at the
leftmost point on its top row, before moving clockwise. Once
the procedure returns to the start-point the IPAN algorithm
is run on the traced path, which identifies a location of high
curvature on the underside of the oval: creating a new vertex
and two path segments. As the path length for each segment
is sufficiently larger than the distance between its endpoints,
each is classified as a CURVE.

The final graph (fig. 8f) is produced by considering how
these components relate to one another. To capture the
glyph’s orientation, a purely logical vertex at (0, 0) is defined
with no connection to any image component: a new edge
is then placed between the logical vertex and the vertex on
the top-side of the oval, its nearest neighbour, labelled as
a NORTH relation. Finally, we consider topological relation-
ships: the endpoints of the inner component connect to their
closest neighbour in the outer component with a NEIGHBOUR

relation. The reverse also occurs from the vertices in the
outer component towards the inner, but duplicate NEIGHBOUR

relationships are not stored.

“Indistinct” characters When working with character im-
ages derived from fonts, GlyphGraph produces isomorphic
graphs for characters which humans would instantly describe
as distinct. As shown by fig. 9 for the DejaVu Sans font,
due to unexpected “tails” and conjunctions within the binary
skeletons the letters ‘Z’, ‘H’ and ‘K’ are jointly isomorphic.
What additional information exists within the structure of
these characters that can be used to make their graphs more
distinct? By looking at the skeletonised forms alongside
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Figure 8: Walkthrough of Θ’s image→graph trans-
formation by GlyphGraph. Labels have been simplified:
LINE = 1, CURVE = 2, NEIGHBOUR = 3, NORTH = 4. Note
that the downsampling observed here between figs. 8a
and 8b is not part of the algorithm, and is performed
only to aid understanding.

the output graph, the current modelling technique allows
us to see features of glyph paths which might be used—in
particular, we might wish to include positional data or the
relative angle between lines and curves at interest points.
The first of these options likely comes at the cost of skew-
or scale-invariance, but adapting algorithm 1 to capture the
latter class of features seems a worthwhile approach.

4.2. A “dual” representation with path direction

In the framework established, it is difficult to capture the
relationship between paths since they are modelled by edges.
To rework the model and enable these relationships to be
captured, I start with a dual graph-like conversion: edges
in the prior model are converted into identically labelled

Glyphs Skeletons

4

1

1

1

1

1

Output Graph

Figure 9: Characters with isomorphic structure,
which are thus “identical” GlyphGraph models.
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Figure 10: The dual graph of ‘Θ’, with path features
coloured to match their parent component in fig. 8f.
Vertex labels here match fig. 8’s shorthand for fea-
tures, where edge labels denote relative path angles.
Note that both ‘2’ edges in the regular representation
start and meet at the same point, and thus have two
relative angles against each other in the glyph.

vertices, placing an edge between these new vertices for each
time their corresponding prior edges meet at the same vertex.
While this decision appears sensible since these labels are
the features recognised, to measure (and record) relative
path angles it is insufficient to consider this transformation
alone—algorithm 1 measures and uses the start and end
direction of each path segment, but these are not output. A
modification of the initial algorithm is thus required.

First we must divide our labellings into two classes: stan-
dard features (lines and paths) which have well-defined di-
rections at either end, and special features (neighbourhood,
north) which do not. In the dual representation, edges
between special↔regular edges are simply labelled ‘8’ and
special↔special edges are labelled ‘0’; the directional infor-
mation becomes useful when considering regular↔regular
relationships. These directions are an integer in the range
0–7, numbering the neighbourhood pixels around a path’s
endpoint clockwise from north, and are assigned based on
the location of the first point adjacent to that endpoint. If
two paths meet at a vertex, having directions d and d′ at
that point respectively, then their relationship is labelled
|d − d′|. Quite usefully, we can return to the initial class
of model from this new representation: each dual-vertex is
transformed to an edge between two unknown vertices, which
may be gradually inferred by iterating over the set of edges
in the dual graph. Figure 10 shows the dual transformation
of the regular model of ‘Θ’ from fig. 8.

Theoretically, this new approach should increase match-
ing performance. The MCS procedure as I have defined it
maximises the order of the produced common subgraph, yet
the features in my first model lie on the edges. Running this
procedure on a dual graph-like transformation gives similar
results to the maximum common edge subgraph of the regular
model, matching in a way that puts more emphasis on the
count of features between a pair of graphs.

5. MODIFICATIONS TO K-DOWN

Having seen that both of the proposed models take the form
of attributed multigraphs, Hoffmann, McCreesh, and Reilly’s
k ↓ requires adaptation to accommodate graphs as I have
defined them. The first step in matching these graphs is to
determine which sequence-aware neighbourhood (and thus
adjacency operator) will be used to impose the constraints
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arising from edge labels. Each corresponds to a different
level of filtering:

• the exact neighbourhood N=
s,G is necessary in the in-

duced variant of MCS, so that a pair of pattern and
target vertex pairs may only map to one another if they
have identical edge sequences;

• the overlap neighbourhood N◦s,G provides the bare-
minimum level of filtering needed when considering
the non-induced variant of MCS, allowing a pair of
pattern and target vertex pairs to map to one another
if there is any overlap in the edge sequences;

• the sufficient neighbourhood N<
s,G , which allows a pat-

tern vertex pair to be mapped to a target vertex pair
if every edge in the former can be mapped to an edge
of equal value in the latter, offering an oddly asymmet-
rical mapping when used in MCS—I define this (in the
context of SIP) as building an edge-count-increasing
(ECI) subgraph isomorphism.

Algorithm 6 then defines the necessary modifications to
k ↓ to compute the MCS in each case. At the top of search,
the matching procedure must enforce that vertices of P can
only be mapped to vertices of T with equal labels. Addi-
tionally, any vertices featuring loops must meet the selected
sequence-adjacency criterion (lines 6–7). Per node of con-
straint propagation, domains are pruned using the chosen
sequence-aware neighbourhood—if v is mapped to v′ and v
and w are adjacent with edge sequence s in P, then w may
only be assigned to vertices in the s-neighbourhood of v′

(lines 15–18).
The rest of the algorithm is unaffected by these additions;

by providing both multigraph and simple graph notions of
neighbourhood and adjacency, the existing filtering provided
by supplemental graphs is maintained. Admittedly, further
supplemental graphs could be added, filtering on commonly
seen label patterns in paths; although with the relatively
low-order graphs produced by the examined models such
optimisations would be largely unnecessary for this study.

6. EXPERIMENTAL EVALUATION

To test the effectiveness of these algorithms for character
modelling and classification, three experiments were per-
formed:

1. Firstly, it is necessary to determine whether these graph
models allow matching of characters formed in distinct,
uniform, machine-generated styles. This is explored
via the construction of “confusion matrices” between all
graphs of characters in the Latin alphabet from several
fonts, both lower- and upper-case. To this end, the or-
der of the maximum common subgraph and graph edit
distance are displayed via heat-maps to show character
graph (dis-)similarity within and between fonts. For
this, I chose three fonts to investigate: DejaVu Sans,
Open Sans (both sans-serif), and Alegreya (serif). The
aim is to show that the generated graphs are reasonably
distinct from one another within a human definition of
similarity (i.e. we might expect ‘o’ and ‘O’ to produce
identical graphs). Furthermore, I investigate whether
the modifications introduced in section 4.2 create more
distinct glyph models as hypothesised. The experiment

Algorithm 6: Modifications to k↓ [14] for attributed
multigraphs, given (for a graph G) a vertex labelling
function `G , a chosen multigraph neighbourhood function
Ns,G and its associated adjacency operator “∼s,G”.

1 // top-of-search filtering with sequences on loop
constraints

2 foreach v ∈ V(P) do
3 Dv ← V(T )
4 foreach (P, T ) ∈ L do
5 Dv ← {w ∈ Dv : v ∼P v ⇒ w ∼T w ∧

SP (v) k� ST (w)}

6 s← seqP (v, v)
7 Dv ← {w ∈ Dv : `P (v) = `T (w) ∧ v ∼P v ⇒ w ∼s,T w}
8 Dv ← Dv ∪ k distinct wildcard vertices

9 // filtering with sequences during propagation
10 foreach Dw ∈ D\{Dv} do
11 Dw ← Dw\{v′}
12 foreach (P, T ) ∈ L do
13 if v ∼P w then
14 Dw ← Dw ∩ (NT (v′) ∪ wildcards)

15 (P0, T0)← L[0]
16 if v ∼P0

w then
17 s← seqP0

(v, w)

18 Dw ← Dw ∩ (Ns,T0
(v′) ∪ wildcards)

19 if Dw = ∅ then
20 return false

is judged to be a success if most character pairs do not
exhibit isomorphism within each font, having a GED
close to the median graph size. Naturally, a charac-
ter will be isomorphic to itself within a font, and thus
another success criterion is that its model is ideally
similar to the graph model of that same character from
another font.

2. To determine how well these models capture core char-
acter features between different styles of writing, I
apply a k-Nearest Neighbours (kNN) classifier to the
HWRT database of online handwritten character data
[32] (setting k = 5 as in [29]). Images (and graphs) were
constructed from the online path data using a selection
of pen-radii, for r ∈ {1, 5, 9}, to explore how different
levels of connectivity would affect graph structure and
matching accuracy. Specifically, this online data decom-
poses paths into positions on a canvas with attached
timestamps: images were reconstructed by applying
Bresenham’s line algorithm between these path points,
generating a list of locations to place a circle of thick-
ness r. This method recreates glyph images at the scale
at which they were drawn. Additionally, I attempt to
explore how variation of the path curvature threshold
during modelling affects classifier performance, exam-
ining curve thres ∈ {1.2, 1.35, 1.5, 1.65}. For this clas-
sifier graph edit distance is the chosen metric, setting a
timeout of 30 s per graph comparison. Due to the vast
size of the dataset I restrict the database to the set
of upper-case Latin alphabet characters, using a total
of 2000 randomly selected glyphs split into test and
training data. As the database is already divided into
a test and training set, I take subsets of each maintain-
ing the existing proportion. This experiment assesses
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Font Model Graph Order Graph Size

Min Max Median Min Max Median

Alegreya Regular 2 26 11 2 25 11
Dual 2 25 11 3 37 14.5

DejaVu Sans Regular 2 14 6 2 13 6
Dual 2 13 6 1 14 7

Open Sans Regular 2 17 6 2 16 6
Dual 2 16 6 1 18 7

HWRT (r = 1) Regular 2 113 7 2 172 6
Dual 2 172 6 1 398 8

HWRT (r = 5) Regular 0 40 7 0 55 6
Dual 0 55 6 0 116 7

HWRT (r = 9) Regular 2 59 7 1 126 8
Dual 2 41 7 1 126 8

Washington Regular 7 75 33 6 93 42
Dual 6 93 42 6 170 75

Table 2: Aggregate statistics on graph order and size
produced from the used datasets.

whether the features captured within any glyph were
consistent between similar images in a way that enabled
optical character recognition—a sufficiently high accu-
racy (∼ 90 %) would indicate success. Additionally, I
assess effectiveness using the Cohen’s Kappa metric,
which takes ground truth classification counts into con-
sideration for effectiveness: a value κ ≤ 0 means that
decisions are equal to or worse than random chance,
and κ = 1 indicates perfect agreement with the ground
truth.

3. Finally, it is important to position this work in relation
to existing graph models which have been applied to
handwritten word recognition. For this task, I apply
the same classifier to a subset of the George Washington
Letters dataset2 made available by Stauffer, Fischer,
and Riesen [29]. I use the same parameters on the clas-
sifier (k = 5, 30 s timeout), also varying curve thres as
in Experiment 2. This experiment allows me to directly
compare the modelling efficiency of my graph models
combined with the defined GED against Stauffer, Fis-
cher, and Riesen’s existing modelling techniques. As
these graphs model whole words, graph order is likely to
become an issue, harming classifier performance—made
aware of this, I consider a lower classifier performance
(∼ 80 %, roughly the result of Stauffer, Fischer, and
Riesen) to be successful.

All experiments were run on a Windows 10 Pro x64 machine
using the Windows Subsystem for Linux, with an Intel Core
i7–920@2.67 GHz and 12 GiB RAM. All code used for these
experiments is publicly accessible on GitHub3. In all cases,
statistics on generated graph order and size were collected in
table 2, allowing further commentary on suspected reasons
behind matching performance. Similarly, each experiment
was attempted at all levels of filtering defined in section 5 to
determine the related effects of each on classifier performance.

6.1. Results and discussion

Experiment 1 Figure 11 shows the effect of each level of k ↓
filtering upon character distinctness during matching. Few
differences are noted between the edge-count-increasing and
non-induced levels of filtering (figs. 11b and 11c respectively),
likely as they both build on the use of the non-induced vari-
ant of MCS. The induced MCS (fig. 11a), on the other hand,

2http://histograph.ch
3https://github.com/FelixMcFelix/sip-for-cv-paper

finds the set of characters to be largely more distinct from
one another due to its stronger filtering. A more thorough
examination reveals that many sets of unexpected isomor-
phisms remain: {Z, H, K} as explained in fig. 9, {n, h}, {c,
s, C, S}, {b, p}, and {q, d} to name several. While many
of these are expected due to identical upper- and lower-case
forms, several of these suggest that the original model lacks
discriminative power and captures too few features; chiefly,
these appear to be path length, path angle dynamics and
glyph size. Throughout all comparisons, it is clear that many
of these graphs still exhibit high similarity to one another
(60–70 % in the induced case), implying that many of the
character graphs share identical components. This may arise
from the fact that the MCS is not connected, i.e. I do not im-
pose that there must be a path between every pair of vertices
in the MCS; this allows the addition of extra vertices which
have no paths to the main components during matching. For
instance, in every graph an edge marked NORTH between a
pair of vertices is guaranteed to exist, and during search may
be added to the MCS “for free” if it is disconnected from the
current incumbent. In future, it may thus be worthwhile to
consider the maximum common connected subgraph problem
(MCCS), which does impose such restrictions [18].

Having established the induced variant of MCS as the
most discriminative, fig. 12 then presents the effects of the
dual encoding upon glyph similarity for this level of filtering.
Broadly, figs. 12a and 12b show an overall reduction in
similarity across the entire space of comparisons—showing
that the dual graph representation is successful in making
glyph models more distinct from one another. Many of
the unexpected isomorphisms have been removed by this
modification to the algorithm, yet not all; note that {H, K},
{n, h}, {b, p}, and {q, d} remain isomorphic, alongside many
of the prior letters with “identical” upper- and lower-case
forms. While it is unsurprising that a few such isomorphisms
remain (we have not yet modelled the phenomena which
actually differentiate them), revisiting fig. 9 sheds some light
on the case of ‘H’ and ‘K’. Note that in ‘K’, the skeleton
paths from the right junction start vertically leading to
identical path dynamics between the two glyphs, which of
course suggests further modifications which could be made
to account for overall path direction. I do not consider such
further modifications here.

Figures 13 and 14 then demonstrate the observed simi-
larity between fonts of different classes, examining DejaVu
Sans vs. Open Sans and Alegreya respectively. In the former
case, while some portion of the expected isomorphisms were
observed it is clear from the visual similarity of the fonts
themselves that the model was unable to capture the core
features that define many of the glyphs. Somewhat inter-
estingly, changing to the ‘Dual’ encoding from fig. 13a to
fig. 13b removed some of these observed isomorphisms, indi-
cating different curvature along the traversed paths. Indeed,
curvature may well be the root of many of the other ‘missing’
isomorphisms, as path-splitting using the IPAN algorithm
is likely to have some sensitivity to what humans might
appreciate as minor variation. In the case of DejaVu Sans
against Alegreya, while some clear glyph isomorphisms are
preserved between fonts ({o, O}, and ‘Q’), the font graphs
exhibit startling dissimilarity. A considerable factor here is
the difference in graph order of these font classes; serif fonts
display far more variation and ornamentation, particularly
on letter path endpoints. This naturally leads to more paths
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(b) Edge-count-increasing
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(c) Non-induced

Figure 11: Heatmaps displaying graph similarity (graph order of MCS) between glyph graphs in the DejaVu
Sans typeface, normalised by the order of the largest graph in the comparison. These plots show the effects
of the different levels of filtering introduced in section 5. Warmer colours imply more similarity, where cream
means isomorphism—an overall darker heatmap shows that characters are seen as more distinct when matching
under the given filtering level. It can thus be seen that characters are perceived as being more distinct when
computing the induced MCS.
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(c) GED: Regular
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(d) GED: Dual

Figure 12: Heatmaps displaying graph similarity (MCS) and dissimilarity (GED) in the DejaVu Sans typeface
as in fig. 11, comparing the distinctiveness of character graphs from the ‘Regular’ and ‘Dual’ algorithm variants.
For GED, lighter colours again imply similarity, where cream implies isomorphism—characters are more distinct
in one encoding if lower similarity is observed outside of the diagonal. Crucially, we can see that the ‘Dual’
encoding leads to more distinctive characters as expected.
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(b) MCS: Dual
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(c) GED: Regular
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(d) GED: Dual

Figure 13: Heatmaps displaying graph (dis-)similarity between the DejaVu Sans and Open Sans typefaces,
conveyed as in fig. 12. Ideally, matching characters are expected to be almost isomorphic—high MCS order and
low GED are expected along the diagonal. While some isomorphisms and general similarities per-character are
preserved between fonts, many of these are lost.
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Figure 14: Heatmaps displaying graph (dis-)similarity between the DejaVu Sans and Alegreya typefaces. Serifs
(such as those of Alegreya) modify many characters at the end of paths—ideally, core elements of the letter
forms should remain identical. Criteria for analysis match those of fig. 13. Aside from ‘o’, ‘O’ and ‘Q’, neither
the ‘Regular’ nor ‘Dual’ graphs reliably enable matching between two different typeface styles.

between these points, producing a rather different structure
overall. Given the nature of how NEIGHBOURHOOD and NORTH

relations are formed, the existence of serifs further compli-
cates matching as these relations are more likely in practice
to concern endpoints.

While successful within a font, the overall results do
not bode well—they indicate that the modelling techniques
and/or the similarity measures are not fit for purpose when
comparing writing in different styles or even regular variation
within a single style. Overall on the specified machine, these
experiments typically took around 30 min each to execute all
52× 52 graph comparisons.

Experiment 2 Tables 3 and 4 show matching effectiveness
for the ‘regular’ and ‘dual’ graph models respectively, as pen
width and filtering level are varied. Some clear trends are
visible from this data: we can observe that accuracy due
to filtering level follows the same trend as character distinc-
tiveness in Experiment 1, that stricter matching conditions
(specifically, the induced variant) lead to greater classifier
accuracy.

Curiously, more distinctive character modelling approaches
do not lead to greater classifier performance. In most cases,
excluding non-induced filtering and edge-count-increasing for
r = 5, the ‘regular’ graph model outperforms its ‘dual’ model
competitor; while the prior results indicate that stricter
matching and modelling should aid classification accuracy,
the dual model might be overly sensitive to the angle vari-
ations and dynamics which are most likely to appear in
handwritten text. In this sense, the dual models are over-
fit to glyphs extracted from fonts. The increased matching
performance for non-induced filtering on the dual models
can be rather roughly justified—the matching procedure has
more “leeway” to match these overfit glyph models against
one another, as non-adjacent vertices may be mapped to
one another and the lax sequence overlap rules allow many
conflicting edge labels to be disregarded. This does not, how-
ever, cancel out the fact that induced filtering is unilaterally
the best option.

In all cases, it can be observed that a choice of r = 1 leads
to the greatest matching accuracy—that is, I find that it is
better to use forms closest to the online data rather than
attempting to enhance path connection features with a larger
stroke thickness. This result is somewhat striking, given the
related rows of table 2. While median graph order remains
roughly consistent over all r, we can see that r = 1 has the

largest outlier graphs and so we might expect it to actually
have the worst performance as graph comparisons would be
more likely to time-out. Larger pen radii, while potentially
enhancing the models of glyphs with unintended gaps, run
the risk of destroying the separateness of components which
were never intended to connect. Interestingly, the contributed
change to accuracy relies strongly upon the chosen model:
accuracy decreases proportionally with r in the dual encoding,
yet consistently sees an increase in accuracy after r = 5 in
the regular model, although it is difficult to offer commentary
on why this behaviour is observed.

Table 5 explores the effect of varying curve thres upon
accuracy, building upon the best seen classifier parameters
(induced, r = 1, regular). A lower threshold value means
that the algorithm is more likely to label path segments as
curves rather than lines, whereas a high threshold will make
curve detection less sensitive overall; extremal values in either
direction will essentially remove the line-curve distinction.
In the given examples, the statistics suggest that a more
sensitive curve detector is correlated with higher matching
performance (likely to some undiscovered lower bound). In-
deed, this trend repeats throughout all tested parameter
choices. Why might we observe this? Natural variation in
the handwritten samples after path splitting might leave
many curves undetected—in this case, a lower curve thresh-
old means this variation is accounted for, and so the model
is less sensitive overall to minor curvature variations.

Within each choice of parameters, I examined whether
the accuracy for each label had any correlation with mean
graph order, size, degree, or line-to-curve ratio. While it
might be expected that these observed features could be a
useful indicator of difficulty within a label class, plotting these
features revealed no overly distinct correlations with labelling
accuracy. To investigate whether overall accuracy had any
correlation with these statistics, I considered any parameter
combinations with induced filtering upon the regular model.
Figure 15 shows the correlations observed between mean
graph size and accuracy—larger graph size (i.e. feature count)
and fewer LINE features correlate with higher accuracy. None
of the other statistics exhibited any correlation.

Unfortunately, the more accurate parameter choices come
at the cost of execution time. Table 6 contains a guideline
set of typical execution times estimated from the filesystem
for this experiment, showing that these times grow for more
stringent filtering levels, and typically decrease as r increases.
This presents a relatively clear accuracy/time trade-off, as
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Filtering r (px) Accuracy (%) κ

Non-induced 1 27.15 0.220
5 16.74 0.106
9 22.17 0.160

ECI 1 30.32 0.253
5 18.10 0.122
9 23.53 0.175

Induced 1 38.46 0.347
5 29.86 0.256
9 30.77 0.271

Table 3: Classifier accuracy and Cohen’s kappa (κ)
for the ‘regular’ model against the HWRT dataset
when varying pen-thickness (r) and filtering class.
Here, I use the default curve thres = 1.5. A higher ac-
curacy and κ both imply better classifier performance.

Filtering r (px) Accuracy (%) κ

Non-induced 1 28.05 0.235
5 23.08 0.180
9 21.72 0.166

ECI 1 26.24 0.213
5 24.43 0.200
9 21.27 0.161

Induced 1 34.84 0.312
5 27.15 0.233
9 26.24 0.222

Table 4: Classifier accuracy and Cohen’s kappa (κ)
for the ‘dual model’ on HWRT data, as in table 3.

the induced level of filtering in particular imposes stricter
requirements on a solution. Overall, these did not appre-
ciably vary according to the choice of curve thres, with the
exception of the settings (induced, r = 9, dual), where an
increased threshold led to faster classification time.

While the best observed κ indicates a “fair” degree of
progress above the random baseline, these results are far
outmatched by the current state-of-the-art in both graph
modelling of glyphs and standard recognition approaches.
Furthermore, the costly matching time imposed by the use
of exact MCS makes the combined use of this classifier and
these models very undesirable in practice, even though the
graphs are typically of a suitable order. In these regards,
this experiment is deemed a failure. However, this work does
not disentangle the effects of the dual representation itself
from the effect of the allocated angle labels—this must be
explored in future work.

Experiment 3 From table 7, we can see that the results on
the Washington dataset are far from satisfactory, and have
κ scores so low that they are little different from random
chance. A key factor in this lies in the graph statistics of
table 2: the regular model has a median graph order of 33,
which is pushing close to the limits of k ↓, keeping in mind
that half of all graphs in this dataset will be larger than this
it quickly becomes clear that many of the individual GED
computations timed out. While the median graph order
is lower than the most successful approaches of Stauffer,
Fischer, and Riesen, many of these graphs likely exceed the
capabilities of k ↓ within a 30 s time window. Noting that
the classifier returns a default ‘0’ label for unclassified graphs,

curve thres Accuracy (%) κ

1.2 40.72 0.373
1.35 38.46 0.347
1.5 38.46 0.347
1.65 35.75 0.318

Table 5: Classifier accuracy and Cohen’s kappa
(κ) for the ‘regular’ model against HWRT data as
curve thres is varied, with induced filtering and r = 1.
A lower curve thres means that edges are more likely
to be labelled as curves, and this corresponds to bet-
ter classification performance. This trend is observed
throughout all other examined parameter choices.

Filtering Model tr=1 (h) tr=5 (h) tr=9 (h)

Non-Induced Regular 0.5 0.25 0.25
Dual 2 1 0.5

ECI Regular 1 0.25 0.25
Dual 2 1 0.5

Induced Regular 6 2 1
Dual 4 1 0.5–1

Table 6: General runtime statistics for Experiment 2,
per model and variant, measured in hours.
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Figure 15: Plots of mean graph size and count of
LINE edges against overall accuracy, for settings with
induced filtering on the regular model. In these cases,
larger graph size (i.e. feature count) and fewer LINE

features correlate with higher accuracy.

the disturbingly high incidence of this classification confirms
that time-outs during computation are the root cause of the
problem.

Ultimately, results on the actual effectiveness of this dataset
are inconclusive for these reasons—mandating further investi-
gation with a cheaper, approximate GED metric to establish
the proposed models’ true effectiveness. Furthermore, this
issue may have silently influenced the results of Experiment
2, hinting that future reinvestigation of both these studies
using the work of Riesen and Bunke [23] may be worthwhile.
Given the relatively small dataset size (and the low accuracy),
it as not deemed worthwhile or meaningful to attempt to
identify the affects of different curve thres on classification
performance. Considering run-times, the vastly larger me-
dian graph order of the Washington dataset (table 2) ensured
that runs of these tests took far longer than the prior experi-
ments, coming in at around 24–36 h dependant on filtering
level and the chosen representation.

7. RELATED WORK

General image modelling The Scale-Invariant Feature
Transform (SIFT) and similar approaches have historically
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Filtering Model Accuracy (%) κ

Non-Induced Regular 11.67 0.086
Dual 5.00 0.017

ECI Regular 10.00 0.069
Dual 5.00 0.017

Induced Regular 8.33 0.052
Dual 3.33 0.000

Table 7: Classifier accuracy and Cohen’s kappa (κ)
against the Washington dataset when varying filter-
ing class. A higher accuracy and κ both imply bet-
ter classifier performance. Here, I use the default
curve thres = 1.5—due to the very large typical graph
order, too few accurate classifications were made to
reason about the effects of curve thres. The current
state-of-the-art in graph modelling achieves an accu-
racy of 81.82 % with the ‘Projection’ technique on this
task [29].

been extremely popular vector-space models for image mod-
elling and matching [16, 36]. These techniques typically oper-
ate by identifying locations of high variation within a multi-
scale representation of an image such as a Laplacian pyramid,
capturing high-dimensional gradient neighbourhoods of these
points as features.

Convolutional neural networks (CNNs) have been a sizeable
area of focus recently, with approaches such as Krizhevsky,
Sutskever, and Hinton [15] proving able to accurately learn
image labellings from large datasets. These models operate
by statistically learning kernels from a corpus of training
data to perform image convolution, transforming an image
several times to eventually provide an output classification.
Since these kernels are relatively high-dimensional vectors of
real values, these are not typically transformations which can
be intuited easily. This reinforces the “black-box” nature of
these models, and in combination with work on adversarial
images [12] it is clear that the sensitivities and weaknesses of
such models are extraordinarily difficult to estimate. While
complex networks can require a large volume of training data
and have a costly training phase, CNNs achieve very high ac-
curacy above and beyond existing vector-space models while
having good performance on modern commodity hardware.
Primarily, this is due to the introduction of fast convolution
operations on graphics processing units. Notably, the cost
of classification does not typically scale with the size of the
training data set, as the model learned is a fixed represen-
tation. Further advances by Wei et al. have extended such
object classifiers with intelligent segmentation algorithms [3]
to enable multiple labelling and accurate object location [34].

Handwriting and character recognition Techniques in
this field are broadly split into two categories; online classi-
fiers use direct path input data as captured by a computer,
and offline classifiers which use image data (typically ex-
tracted from some real-world context). Within this frame-
work, the approach I have introduced and evaluated is an
offline approach.

Currently, neural networks (both standard and convolu-
tional) are a key model within offline recognition [31, 30]—
able to tackle word recognition and spotting to high accuracy
in different scripts and language datasets. Aside from this,
the use of SIFT-like keypoints for the task of offline Ara-

bic word recognition has been successfully explored within
a bag-of-features Hidden Markov Model [25], achieving a
lower complexity (and similar effectiveness to) competing
techniques. This approach has been further applied to the
task of word-spotting from the George Washington dataset
[24].

Several existing approaches towards offline graph modelling
of handwritten text are provided by Stauffer, Fischer, and
Riesen [29]. Their work focuses on analysis of the George
Washington letters dataset by a kNN classifier using an
approximate GED metric [23]. In all cases, vertices are
labelled with normalised (x̂, ŷ) coordinates with edges left
unlabelled. The first of their approaches corresponds closely
to my own—endpoints and junctions are identified within a
skeletonised glyph image, and edges are placed by following
paths and creating new vertices for every distance d travelled.
Other approaches focus on grid-based segmentation (with
edges provided through various techniques) and adaptive seg-
mentations combined with edges from path traversal. They
find that the keypoint-based approach has 77 % accuracy
at the cost of very high graph order and size, while adap-
tive segmentations produce lower order graphs with higher
(∼ 80 %) accuracy. Interestingly, they note that the use of
the Delaunay triangulation for such models results in reduced
classifier performance (∼ 63 %) with the highest graph sizes,
supporting my earlier findings in section 3.

8. CONCLUSIONS AND FUTURE WORK

Throughout this paper, I have shown the shortcomings of
current general graph modelling techniques on pixel images,
and presented and evaluated two alternative modelling algo-
rithms for a simplified problem domain. Generally, the new
glyph graph models achieve admittedly poor performance in
comparison with the current state-of-the-art in handwriting
recognition and word spotting (graph models and otherwise).
A common thread throughout has been the unsuitability of
exact MCS algorithms for the task of detecting similarity in
feature-rich models, where the per-graph comparison time
appears to have a distinct effect on classification accuracy.
The sizeable execution time per-comparison compounds with
the kNN classifier’s design, making classification time scale
with the size of the training dataset in a very costly manner
as model size grows.

The models are, however, as intuitive as hoped. When
matching at the character-character level, I’ve shown that
the graph structure is a seemingly natural way to model this
information, making it easy not only to see why individual
misclassifications occur but to suggest modifications which
make characters more distinct. This is a double-edged sword
to some extent; while the modifications brought by the dual
model allow for more effective modelling of glyph images
from font data, they cause stark overfitting due to hidden
assumptions about variation in path starting angle.

Using only GED as the scoring metric may itself be inap-
propriate for preserving certain character features. Consider
the relatively small GED between ‘p’, ‘q’, ‘b’ and ‘d’, where
arguably the largest difference comes from the single orien-
tation vertex and its NORTH edge to another keypoint. A
more useful distance metric on these models might score
the loss or inclusion of certain features to heavily penalise
orientation differences, but this leads us farther from stan-
dard graph matching algorithms towards domain-specific
similarity scores.
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Existing ML and keypoint models are effective because they
are designed to learn features of arbitrary high-dimensional
data which are distinctive and discriminative in their own
right. Graph models appear to need to be designed specif-
ically for the task at hand, and for more general matching
tasks it is not immediately clear if low-level image modelling
in this way is possible since we require an explicit notion of
entities and relationships. The explored graph models seem
to capture some level of discriminative features from their
input glyphs, and by varying the defined parameters it was
possible to create a classifier operating appreciably above the
random baseline. There is perhaps some merit in elements
of the outlined techniques. Without attempting to measure
performance with an approximate GED metric, it is difficult
to say whether this approach requires a complete rethink or
simply further tweaking to be truly effective on the assessed
tasks. I believe a significant redesign is necessary, though
given the differences between my approaches and Stauffer,
Fischer, and Riesen [29] I believe it may be worthwhile to
investigate how their models fare with the introduction of
line/curve semantics.

8.1. Future work

The results shown necessitate investigation of these models
with an approximate GED metric (such as Riesen and Bunke
[23]) to cement this work’s position within the literature. In
a similar vein, having seen that the induced MCS offers the
greatest classifier performance it may be useful to consider
a modification of the McSplit algorithm [33] or consider
the MCCS rather than MCS—although this would almost
certainly provide less benefit than simply approximating the
edit distance. There is also some value in modifying the work
of existing, successful graph models such as Stauffer, Fischer,
and Riesen [29] to see how features like line and curve segment
capture might affect classification performance. As alluded to
above, for both this model and the proposed modification of
the state-of-the-art an investigation of feature-aware custom
scoring functions might be of use. This would allow us to
penalise the omission of certain features, with the caveat
that this would no longer be a standard graph matching
problem. The work of Redmond and Cunningham [22] on the
temporal subgraph isomorphism problem focuses on matching
general patterns of edge labels between graphs, rather than
performing exact label matching. Rich side-constraints such
as these could offer key insight on techniques to accurately
match path angle dynamics in a less rigid fashion. These
could also be combined with the temporal data found within
the HWRT online dataset itself.

If greater performance can be achieved, it may well be
worthwhile to consider other problem domains which rely
upon path-based structures. One such domain would be the
identification of common components and design patterns
within circuit diagrams. Since there are few ways to build
components with known functionality (i.e. logic gates and
amplifiers), it may be possible to locate such components and
describe the blueprint at a higher level using graph model and
search techniques. The intricate structure of these diagrams
would likely make MCS computation almost impossible, but
if we assume that input images are relatively free of distortion
then SIP algorithms become a natural fit for the problem.

The use of approximate similarity measures may enable
lower-level graph models for general images, such as us-
ing multi-scale keypoint features as vertices with a suitable

method of defining edges. While this would lead to higher
graph order due to the large volume of feature vectors which
SIFT-like approaches can output, approximate measures
should allow the use of larger input graphs—potentially al-
lowing the use of graph models in more general computer
vision tasks. The specifics of how to approach such a model
are very much an open question, however.
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[26] É. Samuel, C. d. l. Higuera, and J. Janodet. Extracting
plane graphs from images. In E. R. Hancock, R. C. Wil-
son, T. Windeatt, I. Ulusoy, and F. Escolano, editors,
Structural, Syntactic, and Statistical Pattern Recogni-
tion, Joint IAPR International Workshop, SSPR&SPR
2010, Cesme, Izmir, Turkey, August 18-20, 2010. Pro-
ceedings, volume 6218 of Lecture Notes in Computer
Science, pages 233–243. Springer, 2010. isbn: 978-3-
642-14979-5.

[27] D. A. Sinclair. S-hull: a fast radial sweep-hull routine for
delaunay triangulation. July 2010. url: http://www.s-
hull.org/paper/s_hull.pdf (visited on 03/27/2017).

[28] C. Solnon. Alldifferent-based filtering for subgraph iso-
morphism. Artif. Intell., 174(12-13):850–864, 2010.

[29] M. Stauffer, A. Fischer, and K. Riesen. A novel graph
database for handwritten word images. In A. Robles-
Kelly, M. Loog, B. Biggio, F. Escolano, and R. C.
Wilson, editors, Structural, Syntactic, and Statistical
Pattern Recognition - Joint IAPR International Work-
shop, S+SSPR 2016, Mérida, Mexico, November 29 -
December 2, 2016, Proceedings, volume 10029 of Lec-
ture Notes in Computer Science, pages 553–563, 2016.
isbn: 978-3-319-49054-0.

[30] S. Sudholt and G. A. Fink. Phocnet: A deep convolu-
tional neural network for word spotting in handwrit-
ten documents. In 15th International Conference on
Frontiers in Handwriting Recognition, ICFHR 2016,
Shenzhen, China, October 23-26, 2016, pages 277–282.
IEEE Computer Society, 2016. isbn: 978-1-5090-0981-7.

[31] Z. Sun, L. Jin, Z. Xie, Z. Feng, and S. Zhang. Convo-
lutional multi-directional recurrent network for offline
handwritten text recognition. In 15th International
Conference on Frontiers in Handwriting Recognition,
ICFHR 2016, Shenzhen, China, October 23-26, 2016,
pages 240–245. IEEE Computer Society, 2016. isbn:
978-1-5090-0981-7.

[32] M. Thoma. Hwrt database of handwritten symbols,
Jan. 2015. doi: 10.5281/zenodo.50022.

[33] J. Trimble, C. McCreesh, and P. Prosser. A partitioning
algorithm for maximum common subgraph problems.
Unpublished, Feb. 2017.

[34] Y. Wei, W. Xia, J. Huang, B. Ni, J. Dong, Y. Zhao,
and S. Yan. CNN: single-label to multi-label. CoRR,
abs/1406.5726, 2014.

[35] E. Welzl, P. Su, and R. L. S. D. III. A comparison of
sequential delaunay triangulation algorithms. Comput.
Geom., 7:361–385, 1997.

[36] J. Wu, Z. Cui, V. S. Sheng, P. Zhao, D. Su, and S.
Gong. A comparative study of sift and its variants.
Measurement Science Review, 13(3):122–131, 2013.

14

http://www.s-hull.org/paper/s_hull.pdf
http://www.s-hull.org/paper/s_hull.pdf
https://doi.org/10.5281/zenodo.50022

	Introduction
	Graphs, Search and Similarity
	On Existing Image Graph Models
	Algorithms for Modelling Text
	Graphs from path curvature
	A ``dual'' representation with path direction

	Modifications to k-Down
	Experimental Evaluation
	Results and discussion

	Related Work
	Conclusions and Future Work
	Future work

	References

