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Abstract

In light of various reports and leaks concerning the monitoring powers of nation-states and other well-funded
adversaries, privacy on the internet has become a hot topic in recent years. However, state-of-the-art defences
such as onion routing have not seen adoption in general usage outside of enthusiast circles and in cases of
dire urgency. Designing a small-scale system to use this technology from the web browser environment may
potentially address this lack of uptake by increasing usability. Additionally, the ability to use onion routing
selectively may be useful for application developers who desire higher performance for certain classes of traffic.

I provide the design of a simple privacy-focused messaging application, as well as the design and imple-
mentation of a suitable network stack providing features necessary for secure applications and communication
over WebRTC. I believe that this shows the viability of introducing small-scale onion routed paradigms into con-
ventional networked applications to provide increased security, by treating the application server as a nominated
peer.
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Chapter 1

Introduction

In recent years, privacy online has been a growing concern for many users who fear interception of their internet
traffic by sufficiently determined and well-funded threats such as criminals or nation-states. Packet analysis of
typical internet traffic can reveal information about which services a user accesses over the internet, who they
communicate with, as well as the contents of the data sent across the internet if encryption is not used. Onion
routing is widely believed to be the best defence against such adversaries, and is often used to hide activities both
benign and criminal.

However, usage of Tor and other such clients is often dramatically slower than standard internet traffic,
and it is seen as extremely unwieldy to set up for specific programs. As a result, very few users make use of
the technology to secure their communications. A specifically tailored, cross-platform application could utilise
modern web technology and onion routing techniques to make it drastically easier for users to stay in touch
without fear of their privacy being breached.

One such environment that provides the safe, cross-platform execution we desire for making onion routing
easily deployable is the web browser. However, peer-to-peer connection schemes such as WebRTC remain
in an experimental state. The core problem is to assess whether these peer-to-peer technologies are mature and
dependable enough to build an onion-routing protocol into a web-browser. Perhaps more importantly, this should
address the deployability issues of Tor and related systems by occurring entirely within the browser sandbox and
without requiring the user to install extra plugins or extensions – by requiring no user effort.

In this report, I show the feasibility of providing onion-routed communication within the standard browser
environment by presenting an implementation of an onion-routing scheme over a heavily modified variant of
the Chord peer-to-peer network. However, the inconsistent state of WebRTC support across different browsers
heavily limits the effectiveness of my design. Additionally, I show how modifying the Chord protocol to be
message-driven instead of exclusively file-oriented enables the design of modern, extensible systems, and that
the addition of a cryptography-based authentication and identification schema with strong file ownership allows
for the design of secure applications. Furthermore, the paper presents an onion-routing algorithm designed for
environments where Transport Layer Security is not practical or usable, and shows the required design consider-
ations for implementation of Chord in an environment with strong restrictions on connectivity.

The remainder of the report is structured as follows: Chapter 2, Background will provide a brief expla-
nation of various concepts which underpin the report’s content, such as onion routing, WebRTC and the Chord
peer-to-peer protocol. Additionally, it supplies a light discussion of related work which I have encountered dur-
ing my research for this project. Chapter 3, Requirements contains a high level description of the functionality
required by the application and network stack, as well as the assumed capabilities of an adversary that the system
is designed to defend against. Chapter 4, Architecture and Design describes the structure and high-level opera-
tion of the complete system, from the application design to the mechanisms of the network stack. Also discussed
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is the evolution of my system design as new requirements have arisen. Chapter 5, Implementation Details
discusses the network stack implementation from a lower-level perspective, introducing the various difficulties
and roadblocks encountered during development as well as the methodology and limitations of any operational
testing. Chapter 6, Security Considerations provides a discussion of how each layer affects the security of
the overall end project, along with various attacks proposed on the presented design. Chapter 7, Evaluation
considers my thoughts on the design presented in this report after its implementation, as well as my experi-
ences throughout the year working with WebRTC, deploying to multiple platforms and working with JavaScript.
Chapter 8, Discussion and Future Work concludes the report, summing up and reiterating my findings from
this project as well as discussing improvements to the designs and material discussed here to make the system
examined more suitable for production deployment.

2



Chapter 2

Background

This section introduces several topics which are important in the context of this report: WebRTC, Chord and
Onion Routing.

Web Real-Time Communication (WebRTC) brings true peer-to-peer connection between browsers, and is thus
the main form of connectivity used throughout the project. Its connection model differs significantly from more
common models such as TCP or any other sockets based approach – as such, it is worth explaining the operation
and design rationale of the protocol. Chord is the basis for the network topology used in achieving decentralised
onion-routing; it provides key-based routing, a high degree of reliability and is known to scale well. Construction
of its hallmark ring topology is described, as are some alternate variants of the protocol. Finally, Onion Routing
is the key topic of this report, and is a cryptographic procedure to protect data from external agents by applying
successive layers of encryption. It is introduced and explained with reference to two well-known implementations
of the concept - Tor and I2P.

Additionally, a selection of papers related to these topics and to the report in general are introduced and
discussed briefly. Their contributions to the ideas in this report are mentioned, as are any significant differences.

2.1 Web Real-Time Communication (WebRTC)

WebRTC is a protocol standard and browser API which allows any two compatible web browsers to communicate
directly with one another. Browsers discover partners and exchange connection data with the aid of a signalling
server, as seen in Figure 2.1. Additionally, it takes care of other obstacles for peer-to-peer communication such
as Network Address Translation (NAT), a form of IP indirection, by trying multiple routes to the selected partner
and choosing the best available path.

WebRTC is a multimedia-focused peer-to-peer protocol designed to support and enable Voice over Internet
Protocol (VoIP), video conferencing, efficient peer-to-peer online gaming and file transfer [9]. Proposed in re-
sponse to the vast quantity of proprietary, plugin-based implementations of direct communications systems in
web browsers, WebRTC was born in part from the lofty goal of standardising direct multimedia transfer between
interoperable browsers and other capable endpoints. The protocol focuses primarily on audio and video commu-
nication between two compatible user agents, with binary data transfer remaining a secondary (but important)
concern. Remarkably, much of the protocol’s design is driven by a desire to make use of existing, established
protocols to aid in the adoption process and to provide a degree of backward compatibility where possible [5].

The WebRTC protocol provides two classes of peer-to-peer connection – Media Streams and Data Channels,
for audio/video streaming and raw data respectively [8]. However, if one or more of the users are behind firewalls
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Browser A Browser B

Signalling Server

Connection Information
(SDP)

Connection Information
(SDP)

DTLS or RTP Connection

Figure 2.1: High level operation of WebRTC.

or Network Address Translation (NAT) then this can prevent or seriously impede communication. To provide
peer-to-peer functionality within and between browsers, WebRTC makes use of the User Datagram Protocol with
the help of Interactive Connectivity Exchange (UDP+ICE) to provide NAT traversal for all peer connections [10].

Security lies at the heart of WebRTC’s design. In media streams, all data is carried using the Secure Real-
Time Protocol (SRTP), and across data channels Datagram Transport Level Security (DTLS) is used. These
choices are well-founded – DTLS is a derivative of the Secure Sockets Layer protocol (SSL) (which is known to
be secure), while RTP has been proven more than capable for media transfer since its inception in 1996. SRTP
represents the addition of cryptographic properties and secure profiles to the RTP standard to achieve authen-
tication and data protection. For both media streams and data channels, an initial key exchange is performed
through DTLS-SRTP keying. Specifically, these technologies add confidentiality, integrity protection and source
authentication to all of WebRTC’s transports [10][17]. This makes WebRTC extremely suited for use in secure
contexts as well the standard use cases.

Data channels then implement the Stream Control Transmission Protocol (SCTP) on top of DTLS to provide
a high degree of configurability for various transport guarantees. For instance, data transfer may be unreliable
(like UDP) or reliable (as in TCP) as needed by the application layer, and data channels may or may not have
in-order delivery guarantees. This configurability is extremely important for implementing different classes of
application with WebRTC – consider most video games, which do not require guaranteed in-order delivery,
in comparison with file transfer or IRC-like text messaging clients. Additionally, the particular order of these
protocols in the layer stack was chosen to allow transmission of arbitrary-size binary data over data channels
[10].

2.1.1 Connection Model

Establishment of a WebRTC Peer Connection relies on out-of-band exchange of Session Description Protocol
(SDP) and ICE data. This model is heavily influenced by textual protocols such as Session Initiation Protocol
(SIP), which is designed to convey information about a host’s capabilities such as their supported codecs or
preferred transport guarantees. In fact, WebRTC allows for the use of any potential signal channel [1]. The

4



inclusion of this model is particularly important for negotiating streaming and content capabilities for Media
Streams, as RTP is built with the assumption that an external signalling channel like SIP is in use [17].

WebRTC makes use of SIP-like offer/answer semantics, as browsers are otherwise unable to establish direct
connections to one another [1]. When opening a connection, a client generates an SDP offer, containing a list of
their capabilities, DTLS parameters to help establish a secure connection, and potentially several ICE candidates.
This is sent along a signalling channel to an external server, who is responsible for directing the offer to another
client. On receipt of an SDP offer, another client generates an SDP answer, taking into account their partner’s
capabilities as well as their own before sending the reply across the signalling channel. During this exchange
additional ICE candidates may be transferred through a process known as ICE trickling. Once the initial client
receives the SDP answer and enough ICE candidate data has been exchanged, the clients determine the best
available route and the connection is opened.

Critically, WebRTC imposes no constraints on encryption of signalling channels – SDPs and ICE leak the
true IP address of each node to the outside world if developers are not careful, as they are under no obligation to
encrypt or otherwise make their signalling channels secure. This in stark contrast to the design of the connections
themselves, which encrypt each and every packet to protect user communications. As a result of this, the greatest
vulnerability to user security arises from careless developers who may either be unaware of this fact or make a
mistake during the implementation of their signal channel [1].

Due to this, when signalling to a potential connection partner it is worthwhile to obtain some “fingerprint”
connecting a partner’s key-pair to their identity in addition to encryption of SDP and ICE data – this functionality
is typically supplied by an Identity Provider (IdP). This guarantee is by no means necessary, but WebRTC can
interact with IdPs and include verification data alongside SDP or ICE candidates to automatically protect against
man-in-the-middle attacks by utilising the externally trusted service for verification and authentication [19].
This project does not make any use of these features, instead directly tying the concepts of verification and
authentication together by making use of self-certifying identifiers, discussed further in section 4.3.1.

2.1.2 Network Address Translation (NAT) Traversal

One of the key services that WebRTC provides is NAT Traversal. Many users connect to the internet behind
one or more levels of IP indirection: from inside of a home router, within their Internet Service Provider to
divide IP addresses amongst multiple clients or elsewhere between a user and their destination. This can make
it very difficult for a machine on the outside of a NAT to directly contact a user on the other side – tunnels
through NAT must be opened by the internal user, and are often ephemeral in nature. WebRTC makes use of
Interactive Connectivity Exchange (ICE) to allow any two clients to gather a list of routes which they believe
themselves to be known by, before exchanging these routes with their partner through an external server. Each
client then tries each supplied route in turn, determining which are valid and which are not, and both clients
arrive at a consensus, choosing the best route for communication across NAT. ICE address gathering is helped by
two companion protocols: Session Traversal Utilities for NAT (STUN) and Traversal Using Relays around NAT
(TURN).

STUN is a client/server model protocol used to help two clients communicate across NAT. Although it is a
key tool for NAT traversal, it is not a complete solution by itself, and is used as part of ICE and other complete
schemes. STUN’s main use is for a client to determine whether it is behind one or more layers of NAT, and to
obtain an externally usable IP address in the event that this is the case. Additionally, STUN can check connec-
tivity between two end points, and can be used as a keep-alive protocol to maintain NAT bindings. To do this,
a STUN client contacts a STUN server to determine which “binding” a NAT has allocated to it. As this packet
travels across the internet, it may pass through multiple NATs, modifying the source address and port each time.
When the STUN server receives this request, it takes note of the source IP address and port of the request packet
– which will correspond to the binding on the last NAT that the packet travelled through. This is known as the
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server reflexive address, and is effectively the client’s IP address as seen by the outside world. The STUN server
replies to the client with this information in an obfuscated manner. The client, on receiving this reply, now has
knowledge of an external IP address that may be used to contact it – it may also determine whether or not it is
behind at least one NAT if this address does not match its outgoing route [16].

NAT B
(20.43.252.9)

NAT A
(42.123.1.20)

Client
192.168.1.101

STUN Server

 Who Am I? 

 You are
20.43.252.9 : 65432! 

Figure 2.2: Simplified model of how STUN works to pro-
vide the server-reflexive address.

The purpose of TURN is to help two clients partic-
ipate in peer-to-peer communication in the event that
one or both of the hosts are behind symmetric NAT,
or when a direct communication path cannot be found
for some other reason. To do this, a TURN server
is used, acting as a relay for all packets sent to and
from one of the hosts. The host behind the relay is ca-
pable of sending packets to control the relay, as well
as to exchange packets with their peers by exposing
one or more public addresses via the server. This op-
erates through the client contacting a TURN server.
The client then obtains an IP address and port on the
server - known as a relayed transport address. The
client then informs any other hosts that this is its ad-
dress, allowing communication to occur. The server
then overwrites the source field of the headers of any
traffic from the source to originate from this new ad-
dress, and similarly replaces the relayed transport ad-
dress of any incoming packets to redirect them to the
true destination.

Naturally, this comes at high cost of bandwidth to
the TURN server, especially where many users must be served or in the case of video streaming. TURN servers
are typically rented or paid for to provide this privilege as a consequence of the additional load they impose on
the resources of a machine and its network [15].

In the context of usage within WebRTC, relaying packets in a connection has no impact on the security
implications considered above. This is due to the use of SRTP or DTLS to encrypt media streams and data
channels respectively – the TURN server is only able to parse the UDP headers of any packet in the flow.
Although useful in practice, TURN is not utilised as part of the project. This is largely due to the additional load
(and cost) this would impose if I were to host such a server myself.

ICE is a protocol designed to provide NAT traversal for UDP-based sessions which utilise a SIP-like of-
fer/answer model. Historically, offer/answer schemes have been hard to use behind NATs as they typically
contain physical IPs of media sources and sinks – critically, NAT often makes it impossible to contact such ad-
dresses. As well as providing connectivity, we also desire to create a direct communication where possible to
reduce latency, decrease packet loss and to reduce operational cost posed by application-layer intermediaries.
ICE provides this functionality by coordinating STUN and TURN – obtaining a list of ICE Candidates from
each host, a list of addresses which they know themselves to be reached by.

Clients which wish to open connections are known as ICE Agents. Each has a variety of transport addresses:
physical IP addresses of their network interfaces, server reflexive addresses from STUN and relayed transport
addresses from TURN. These are known as Host Candidates, and are categorised by the means they were ob-
tained by. Each agent sends all of its available host candidates – either as a single transmission or piece by piece
as they are gathered (ICE Trickling). The receiving ICE Agent then tries all candidates in parallel and sorts them
into a priority listing based on: a) whether connectivity could be established, and b) the category of the candidate.
Agents are expected to prioritise Physical over STUN over TURN in general. Once exchange is complete, each
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ICE agent uses their generated priority lists to agree on the best suited candidates for communication, and the
connection is opened once consensus is reached [20].

2.2 The Chord Protocol

In this project, the Chord protocol forms the basis of the overlay network for onion routing - it provides the
reliability, efficient routing and global data lookup that are extremely desirable qualities in a distributed system.

Chord is a distributed lookup protocol developed by Stoica et al. to provide efficient data storage and lookup
through key-based routing over a network of nodes [22]. One of the key points of Chord’s design is that it enables
message delivery across a massively scalable, geography-independent space while minimizing the amount of
other machines that any node must know about. The algorithms used to maintain the ring are not documented
here – these are the “stable” variants of the maintenance algorithms from the paper itself [22, p. 155].

Finger Pointers of n

Responsibility(n)
= (n.Pred, n]

Node n

n.Predecessor

n.Successor
( = Successor(n+2^0))

Successor(n+2^1)

Successor(n+2^2)

Successor(n+2^3)

Figure 2.3: Chord - showing file responsibilities and finger
pointers.

To achieve this, all n nodes comprising the
network are given a random m-bit key. Ide-
ally, this achieves an even distribution across the
space of 2m identities for a suitably large choice
of n - this is analogous to a mapping onto the
the set of integers modulo 2m. Each node must
know of at least two other nodes to maintain con-
sistency across the network topology: the first
node preceding it in the identity space and the
first node succeeding it. Respectively, these are
known as the predecessor and successor of that
node.

Any item may be stored in the network
by using a suitable consistent hashing algo-
rithm - i.e. one which minimises the amount
of key-value pairs which must be remapped
as the table’s size grows and provides a rela-
tively high degree of load balancing across the
nodes. By taking the transform on any item,
{Key, V alue},

Store({Key, V alue}) −→ {h(Key), V alue}

for a suitable hash function h, we are able to determine which node within the system will store the item. Each
node N within the system is assigned responsibility over items located in the region (predecessor(N), N ] of
the ring; similarly to the above definition, N is said to be the successor of all keys in this region. This is why we
ideally desire an even distribution of nodes across the identity space - by reducing the fraction of this space that
a node is responsible for, it is less likely to have a higher load incurred from file storage, work distribution etc.

When choosing a hashing algorithm, Stoica et al. note that although cryptographic functions do not meet
all of the required properties of a consistent hash function according to the original paper [12], their known in-
tractability and collision resistance allow us to make reasonable guarantees of load balance given that an attacker
cannot derive multiple keys so that they will overwhelm a specific node [22, p. 152].

It follows from the network topology that a node is guaranteed to be able to locate any stored item with
a known key simply by following the successor pointers until the expected destination is reached. Suffice to
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say, as the network scales to substantial amounts of nodes this incurs an unacceptably high amount of lookups
throughout the system. To handle this, each node maintains a set of log(m) look-aheads across the ring, known
as the finger table. Denoting N as both a node and its assigned ID, we define for i ∈ [0,m], fingeri =
successor(N + 2i) for N . It can be seen that successive finger pointers are further and further apart each time,
“cutting across” the network and greatly reducing the amount of hops to locate an item. It is with this key
optimisation that the network achieves O(log n) lookups with high probability for an n-node system - with the
guarantee that an outdated finger table can still eventually lead to the destination due to the accurate successor
pointers. While this optimisation increases the amount of other clients that a node must know of, it remains a
minuscule fraction of the maximum identity space, while leading to generally massive performance gains.

Several variations of ring structured topologies similar to Chord have been proposed, most notably Koorde.
As with Chord, Koorde nodes maintain active connections to their successor and predecessor - however instead
of maintaining a finger table the look-aheads are based on De Bruijn graphs. Lookups in this scheme are based on
bitshifts on keys to reach a destination, which produces O(logm) lookups for an m-bit key space. Additionally,
more connections relative to total network size may be maintained to achieve a lower bound on maximum lookups
[11]. Koorde, while theoretically faster overall is not as well-understood as Chord and so there is less literature
regarding the stability of its different variants. In particular, Liu et al. found the standard variant of Koorde to
hit “crash point” in a high-churn system considerably sooner than the standard Chord implementation [14]. It is
unclear if the more stable variants of Koorde exhibit similar behaviour to Chord in these benchmarks.

2.3 Onion Routing

Onion routing is a cryptographic procedure to protect data from external agents as well as to provide anonymity to
two correspondents in a communication flow. The technique works by successively encrypting data with multiple
symmetric keys and sending it over a randomised path over relay nodes. Typically, each node is responsible for
removing a layer of encryption and forwarding the packet to another host – with each node only knowing the
previous and next hops within the route. This ensures that the true source of the data remains hidden from external
analysis of the packets themselves, with only the start and end points of a route knowing any more information
about the path.

Onion Routing has become somewhat famous in recent years due to the anonymity guarantees it provides, as
well as among enthusiasts with a strong desire for privacy from their governments. Motivations for its use cover
the full spectrum from personal reasons to the extremely political – in the case of whistleblowers, journalists,
and those who fear retribution from their governments.

Although it is by no means computationally feasible to break the encryption used to protect the contents
of onion routed packets, attacks exist nonetheless. Timing analysis is a known attack on Tor-like systems to
determine whether or not communication is occurring between an external computer and some destination. If an
adversary monitors known exit nodes in addition to a target suspected of using onion routing, then an attacker
may notice consistent a consistent time difference between the transmission times of identically sized packets
from the target and from an exit-node. This becomes even more detectable if an attacker can create congestion
for the target, and see a corresponding change in delivery times from an exit node.

2.3.1 Tor Protocol

Tor is arguably the most well-known and most popular implementation of onion routing in use today – for means
both illicit and honest. Tor’s architecture is built around dedicated, central directory servers which contain a list
of all available relay nodes. A node which wishes to establish a link obtains a list of available relays from a
directory server, and chooses some random subset to act as the path to the desired destination. Obtained routes
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guarantee a user perfect forward secrecy for all data sent across the channel. Importantly, Tor is a stream-focused
protocol much like TCP.

Routes are built in Tor in a piece-wise fashion – a client begins a route by sending a build packet to the
first hop along the route, informing them of their symmetric key and circuit ID to be used within the route.
Subsequent build packets are encrypted using all communicated symmetric keys and are treated as regular onion
traffic – appearing simply as relay packets until all layers of encryption are removed, allowing each hop in
the route to discover the next hop and the address of the previous hop. This process repeats until the route is
completed, at which point the last node is informed by an onion packet that it is the final node. Onion routes in
Tor are bi-directional – once a link is opened, the source sends the list of symmetric cryptographic keys down
the route for the end point to use. If the exit node needs to send data along the same link to the originator, then it
applies the keys in reverse order and sends the data backwards along the chain.

Nodes in Tor communicate with one another using Transport Layer Security (TLS), and all packets within
the network have equal size to attempt to prevent traffic analysis [7]. In practice, Tor is vulnerable to timing
analysis by watching known exit and entry nodes and looking for patterns in the timing of packet entry and exit
from Tor routes to look for correlations.

2.3.2 Invisible Internet Project (I2P) Protocol

In contrast to Tor, I2P makes use of UDP so is datagram- rather than stream-focused, and eschews the need for
central directory servers by using peer-to-peer topologies to allow for distributed routing. Node IDs within the
network are derived entirely from cryptographic data, employing the scheme of self-certifying identifiers within
the NetDB router system – which also protects users from having to reveal their IP address to their communica-
tion partner. Routers within I2P actively profile one another, learning each others’ capabilities, bandwidth and
reliability to aid in the choice of efficient routes [25]. Additionally, I2P tunnels are unidirectional – every node
exposes two inbound tunnels to the network, and encrypted packets are routed to the destination in a packet-
switched rather than circuit-switched manner. Running multiple tunnels to and from source and destination
endpoints also leads to a higher degree of resilience against failures by reducing the likelihood that node failures
and exits will impact both directions of communication [23].

I2P employs a novel technique known as garlic routing in an attempt to address Tor’s potential weakness to
timing analysis. By bundling multiple messages together at different points in the network, giving each its own
delivery instructions, I2P can introduce perturbations in message flows and paths as well as creating variation of
delivery times [24].

2.4 Related Work

This report touches on a wide range of topics – as such, it draws inspiration from and develops upon some of the
ideas expressed in a varied selection of research papers.

Caesar et al. discuss a clean-slate redesign of the internet, ROFL, in [4] using Chord rings within Au-
tonomous Systems (AS) – a key aspect of their design is the use of self-certifying identifiers derived from cryp-
tographic public keys to strongly link the concepts of authentication and verification of hosts. Additionally, their
design makes use of Chord’s segment responsibility rules to direct Internet Protocol packets to their intended
hosts. These concepts form the basis for several of the presented modifications and enhancements of Chord.
Notably, their model allows hosts to occupy multiple IDs to allow for multicast messaging – this is not accounted
or modelled for within this report.

9



Another clean-slate design for the internet is explored by Liu et al. in [13] with the intent of integrating
Tor’s features into the base fabric of the network. By combining onion routers throughout ASs with Rendezvous
Mailboxes, Liu et al. present an alternative design for the internet which they claim provides anonymity, security
and denial-of-service resistance. The combination of mailboxes with onion-routed traffic underpins the commu-
nication model of the proposed messaging client, where these mailboxes are adapted to use a publish/subscribe
model to handle groups instead of the standard put/get semantics they propose.

Avramidis et al. present Chord-PKI [3], a full public-key infrastructure built using the standard Chord pro-
tocol. It is designed to provide overlay network security (defence from attacks on the Chord protocol itself) while
providing a strong trust-based basis for application security. This scheme allows for nodes to manage certificate
granting, movement and revocation using sophisticated techniques such as threshold cryptography, clever state
replication and network segmentation to defend against adversarial nodes. This system is far more complex,
offering considerably more control of security features within the network. Additionally, usage of a full PKI
decouples a node’s ID from its certificates and keys, whereas the scheme explored in this report is far simpler –
leaving aliasing of nodes to be handled by applications through usage of the file system. Avramidis et al.’s no-
tion of a node’s trustworthiness as derived from their perceived adherence to protocol is discussed as a potential
future threat mitigation technique for the network stack presented here.

Dearle, Kirby, and Norcross discuss the application of Chord as a basis for fault tolerant services in [6]. Their
approach treats a Chord ring as the host for a single distributed service – using the file system analogously to
shared memory within a standard computer system. By splitting service components across multiple host nodes
in combination with replication of state within the file system, they achieve an extremely high degree of fault
tolerance by designing these components to be aware of the underlying data replication and properties of the
network. Additionally, they hypothesise that their approach extends to key-based routing schemes in general.

2.5 Summary

Through this overview of related topics and necessary background for the report, I’ve shown how WebRTC is
well-suited to the task at hand by enabling secure peer-to-peer communication within the browser. WebRTC’s
design handles a lot of the traditionally difficult elements of peer-to-peer communication, such as NAT traversal,
capability exchange and route negotiation – additionally, the datagram communication semantics make its usage
far simpler than TCP or other stream-based protocols, which require manual handling of packet framing at the
application level. The protocol’s design does require adaptation of any potential network stack to include a server
which is in some way aware of the underlying peer-to-peer topology, due to its unique connection model. As a
particular consideration, care must be taken surrounding the security and obfuscation of SDP and ICE candidate
connection data to make sure that no unintended host can read this sensitive data inappropriately.

Following this, the Chord protocol was introduced – a ring topology of nodes built on predecessors and
successors in combination with lookaheads across a circular identity space. The topology is very well suited to
the design of the intended client by providing logarithmic-time lookups across the entire network at any scale.
Most importantly for the remainder of the report, the concept of a node’s region of responsibility within a Chord
ring was introduced – while this applies purely to file storage in the traditional Chord model, this definition will
be adapted to form the basis of a message-based variant of Chord.

Onion-routing itself was introduced, with an explanation of the benefits it ensures for communication such
as endpoint anonymity and perfect forward secrecy. Discussing the paradigm with reference to Tor and I2P, two
well-known implementations, provides some rationale on the design choices made when taking elements from
each to provide a hybrid model. Finally, I introduce notable elements from related papers with a strong influence
upon my final design – self-certifying identifiers to defend against identity spoofing within the network, and
rendezvous mailboxes, which act as a denial-of-service resistant means of anonymous message delivery.
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Chapter 3

Requirements

In this section, I introduce and discuss the high level requirements of the hypothesised messaging client - build-
ing up from an initial threat model where I discuss the capabilities of an attacker that the system must defend
against, followed by the feature set that the messaging service must provide to users. From these two sets of
considerations, I then derive a set of services that the network stack must provide to the application layer to make
such a design feasible.

3.1 Threat Model

The threat model assumed here is an attacker capable of traffic analysis, determining the origin and destination of
a given message. In general, they have three goals: viewing communication content, determining the participants
of a conversation, and performing denial of service if these cannot be met. They are not assumed to be capable
of breaking sufficiently strong cryptography, but they are assumed to be capable of spoofing their identity within
a peer-to-peer system either through modifying packet headers or at the application level. Additionally, they are
capable of modifying packets which pass over any node or computer they control, substituting fields or acting
as an intermediary. This attacker has the resources to generate many identities within the network, and has
the computational power, time, and money to devote to finding collisions against hashing algorithms which are
known to be broken.

These capabilities are assumed for multiple reasons. Modern cryptographic algorithms rely on problems
which are thought to be infeasibly hard to solve, such as large prime integer factorisation, i.e. there exists no
known efficient algorithm to solve them. These form the basis of modern cryptography – if an attacker did have
some means of breaking them at any arbitrary strength or key size, then no protection could suffice. Assuming
a limit to the attacker’s capability is essential. Reading headers of packets is, however, trivial – and in a peer-
to-peer network, modifying them would be similarly easy. An attacker’s ability to generate many identities is
drawn from real-world experience; this technique is the crux of Sybil attacks, covered in detail in Chapter 6.
Such attacks have been used against systems like Tor [2], as such my solution must account for (or at least
be aware of) an attacker’s ability to use these techniques against users. Several hashing algorithms, previously
thought secure, have had powerful attacks developed against them. Methods of finding full collisions have been
demonstrated against SHA-1, at budgets of 75K$ to 120K$ – this is stated by the authors as falling well within
the resources of governments and criminal syndicates [21].
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3.2 Messaging Client Requirements

The requirements for the messaging client were developed with reference to existing chat clients such as IRC,
using the MoSCoW model of requirements classification. Requirements are categorised in terms of “Must”,
“Should”, “Could”, and “Would” in decreasing order of importance according to how essential each requirement
is for providing the minimum level of core functionality.

3.2.1 Basic Interactions

A user must be able to begin a chat with any other user, or equivalently join a group.
This allows users to choose who they converse with, and allows users to meet one another on shared
interests or topics of discussion. While well-known messaging protocols such as IRC take a “group-first”
approach, enabling private messaging between two users within a group, due to the secure or confidential
nature of conversations one-to-one correspondence should be an explicit aspect of the design.

Before a chat opens, users must be able to accept, decline or ignore the invitation.
This concerns one-to-one communication in particular. This is intended to act as a spam prevention
counter-measure, ensuring that users cannot be inappropriately contacted or messaged without their ex-
press permission. Ignoring a chat offer should place the invite in some location on the interface where a
user can return to it later – ignoring a second time would remove the invite without notifying the sender.
Accepting, or explicitly denying a chat offer should notify the sender – this distinction gives users a level
of control commonly seen in many messaging clients today.

A user must be able to send a discrete message to another user or group.
This is the basic communication primitive within the system – sending of simple strings (e.g. “Hi! How
are you doing today?”). In both cases, if a message is sent without authorisation then it will not be seen by
the recipient user or group. Messages must be tagged with the current identifier or nickname of the sender,
as a means of identification within groups.

3.2.2 User Information and Features

Users must be able to assign themselves a nickname, provided that the given nickname is not in use.
Although users may wish to be identified purely through a random unique identifier (where true anonymity
is desired), it is not practical for users to have to identify one another in this way.

Users must be able to create a group using an identifying name and a password.
Primarily, groups must be identifiable to users, and the inclusion of a password helps to act as an access
control mechanism on which members are given authorisation to read message contents and post their own
messages. Use of a password should be optional – not all groups will want to restrict their membership.
Multiple groups may feasibly take the same name, as long as their passwords differ – this allows groups to
have public and private sections of a chat channel.

Users must see a list of all (online) users who they have contacted or are in contact with in their current
session. The network should have no concept of “friends”.

Nicknames are, in practice, simply binding a temporary and memorable name to a similarly temporary
(but unmemorable) random identity. For this reason, a user who talks to “BaconMan123” at one time may
(at another time) either be talking to the same user with a different ephemeral identity, or to a completely
different person. The ephemeral nature of user identities within the privacy model means, consequently,
that it makes no sense for users to have a concept of friends within the client.
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Users should be able to make themselves visible globally, advertising that they are available for discussion
with any other participant.

This feature is more of a “quality of life” decision, for users who desire conversation rather than confiden-
tiality. By default, this feature must be disabled to prevent users from accidentally becoming visible when
they join the network. This has no effect on a user’s ability to see incoming chat requests – these must be
visible regardless of whether the user is globally visible.

3.2.3 Group Features

Users should remain hidden in any group they join until they either reveal themselves explicitly or send a
message to the group.

In practice, users may have good reason for being able to “lurk” in a chat group without their presence
being advertised, but similarly they may have reasons for advertising their availability. The latter part
of this requirement is implicit, as messages within the network are tagged with the nickname of the user
which sent them, revealing their presence.

At group creation, a user should be able to specify whether or not a group allows for anonymous or hidden
users.

In certain circumstances, users within a group need to be certain that they are the only participants observ-
ing what is being said as a matter of secrecy or privacy. If there are any unexpected eavesdroppers within
a channel that can go unseen, then privacy for their discussion cannot be guaranteed.

3.2.4 Auxiliary Features

Users could style or format their messages, using MarkDown like syntax to create bolded or italic sections.
Plain text, while a useful messaging format, can often be seen as being a little bland for an instant messag-
ing client. Modern programs such as Discord provide such functionality to allow users to better express a
message’s tone. This feature is not a requirement per-se, but would make the product more complete.

3.3 Elaboration on Requirements Arising From Threat Model

To protect users from external agents determined to discover which clients they connect to and converse with,
onion routing is to be employed to obfuscate the route taken by any messages on the network where total privacy
is desired. Since users all reside within the network, no traffic is exposed between end-points and destinations.
This functions similarly to TOR hidden services and I2P’s connection model, which only allow access from
within the onion network. However, if a sufficiently high proportion of nodes within the network are acting
maliciously or compromised then this property cannot be reliably maintained.

To keep users secure, a large focus of the design is minimising the amount of circumstantial information
that can possibly be disclosed accidentally. To this end, nicknames in applications must merely be an ephemeral
alias for a users current identity – a randomly generated public-private key pair, and users do not register for the
service in an account based fashion. No other information from clients should be requested.

To reduce any risks presented by the potential compromise of a central server, location and connection
information must be distributed across a peer based network. This works in tandem with ephemeral names –
most information about users is hosted on their own client machines, with only a name stored elsewhere on the
network – and since user account data does not need to be stored, this model becomes more viable.

To prevent name spoofing, it is required that only one user at a time may take a nickname – ensuring that a
user can be reasonably certain that they are talking with the only client using a given name. Additionally, we
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require defences in the event that a malicious actor chooses to overwrite nickname records or other protected
data. To augment this, users must authenticate with directly connected clients using the public key attached to
that node along with some certification step to determine whether some other malicious client is intercepting the
data at link set-up.

It may be reasonable to allow users to reserve a given name for themselves, by giving records connecting
keys and nicknames a TTL (“time-to-live”) value and allowing users to save their public/private key pair locally.
This allows certain users to make an explicit trade off – some persistence of their ID in exchange for introducing
elements of risk elsewhere.

The choice to allow users to remain unidentified within groups for which they have access is a deliberate
consideration – a client reading messages like this may still desire to remain truly anonymous, and it should be
within their rights to do so. As other nodes on the network are likely to mirror the buffer of messages for a given
group, such users would appear no different from mirror nodes.

Finally, data should ideally be duplicated across the network where possible, to reduce the impact of node
crashes and potential DDoS attacks on users.

3.4 Derived Requirements for a Network Stack

From the above threat model, the requirements of the top-level application, and the requirements arising from the
threat model, the required viable feature set for the network can be defined. The meanings of “Must”, “Should”,
“Could”, and “Would” apply as before to denote the value and importance of a particular feature.

The network stack must run in any modern browser supporting WebRTC.
Presently, WebRTC is the only vendor-neutral peer-to-peer API available natively within web browsers.
Building a system without such access would require extensive relaying of all traffic across central servers.
Additionally, WebRTC provides secure transmission between any two clients and allows for simple NAT
traversal.

The network routing information must be fully decentralised.
Placing all of a client’s trust in a single infrastructural server is dangerous. We must minimise the impact
of a single point of failure, and reduce risk that a compromised network participant presents to other users
by becoming a malicious actor.

The network must scale to arbitrary amounts of users, with little impact on lookup times.
If we desire a decentralised peer-to-peer routing scheme, then ideally the system must allow any active user
to access or communicate with any other active user. As the network grows, naı̈ve designs cause a heavy
bandwidth cost as they require users to hold a large number of open connections. We need to minimise the
impact of running the network stack on resource constrained devices to achieve the desired deployability.

Contact between any two users should support source verification as well as authentication.
We desire a strong link between someone’s keys and their identity. For instance, if a user looks up the
public key for any other node and a malicious actor serves them a different key then they must be able to
determine that the key does not match that which was requested, and that in fact it belongs to a different
user.

Identities on the network must be ephemeral.
The network identity generated for each user must have no connection to their true identity in any ob-
servable way, be this their IP address, MAC address of any of their network interfaces or any other piece
of revealing data. If this can be inferred from a user’s network identity, then the anonymity guarantees
provided by onion routing fall apart.
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Establishing new connections should not be mediated exclusively through a central server.
Ideally, further connections should be brokered through the peer-to-peer topology. In the event that such a
signalling server were to be compromised or replaced for some nefarious purpose, then an attacker would
be able to see records of connection data being exchanged between pairs of peers. If this occurs, then the
connection data must be obfuscated, so that it cannot be read by an intermediary of any kind.

Cryptographic keys for any user must be globally accessible.
In the event that a user needs to verify the origin of a message (i.e. by checking a cryptographic signature)
or that a user wishes to encrypt a message specifically for another user, then it must be easy to obtain the
relevant public key to perform these operations.

The network must supply distributed file storage.
This allows users to place their cryptographic keys onto the network so that any other node can access
them as needed. Additionally, this allows storage of files which connect cryptographically-derived identity
to a temporary name tag for easy lookup, or to allow shared state between multiple users.

Stored files must have protection from unauthorised change.
A malicious actor could easily send commands to overwrite or modify a user’s public key records, or any
other crucial files they own. Nodes tasked with storing files must be able to recognise whether or not
a change to a file’s contents was requested by an owning user to guarantee file integrity and to prevent
malicious modifications by adversaries.

The network stack should run on both server and client.
A server of some kind is required to coordinate WebRTC connection at all. If the server merely points
to the network, then it over-privileges one or more nodes. This can have disastrous effects if all of these
nodes disconnect and the server “loses” the network. By treating the server as another peer, users which
become completely lost know how to return to the network at any time.

Developers must be able to build extend the stack to build additional transports and applications.
This is a key requirement to enable the development of onion routing – relay and route-building packets
should be directed to hosts using the same rules as standard messages. The only difference is that these
packets must be detected and handled differently.

Onion routes should be uni-directional.
In any drop-in-drop-out peer-to-peer network, a relatively high amount of churn is expected. In the event
that any user which acts as a relay within an onion-route disconnects, the entire route is lost and must
be re-negotiated. This would be time-consuming and incur additional recovery time for each side of the
link. For a sufficiently large network, unidirectional links would be more likely to choose routes with no
overlap, ensuring that if a relay fails or disconnects then the other side of a connection is unlikely to be
affected. Additionally, this reduces the strain that each node in a relay must bear as it is likely to process
less traffic.

The network must support usage of regular traffic alongside onion-routed traffic.
Application developers will not want to send all traffic with the security guarantees provided by onion
routing – onion-routing systems are known to be expensive (in latency, bandwidth and computational
cost). Allowing programmers the freedom to choose their guarantees allows for most networked traffic
in a program’s design to be carried far faster via standard means, imposing less strain on the collective
network.

3.5 Summary

With reference to the desired feature-set of a security-focused messaging application and the capabilities of
an attacker, the necessary features that the network stack must provide were obtained. Crucially, the Chord
protocol provides much of what are requirements mandate. The core design will therefore have to adapt the
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Chord protocol to include the concepts of file ownership and some means of constructing additional transports
and services across the ring.
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Chapter 4

Architecture and Design

This section presents an overview of the intended architecture for a messaging application, as well as an in-
depth look at the design process, evolution, motivations and feature set of the project’s various components.
The design is broadly split into two sections – a network stack, which has been implemented, and a design
for the application layer of the proposed messaging client. As the application layer has not been implemented,
description of the design in these sections typically goes into less detail as the designs have not had to be adapted
during development.

4.1 Overview

Message Client

Shallot

Chord

Conductor

Network

(a) Structure and environment of a client application.

Server
(Node.JS)

Client Nodes 
(Browser / Node.JS)

(b) High level network structure.

Figure 4.1: Simplified system structure at client and server level.

At a high level, the system is composed of a stack of JavaScript modules within a browser which connect
outward to some peer-to-peer network to run the message client application as in Figure 4.1a. Due to the
requirements imposed on the design by WebRTC, a server node of some kind is required to allow browsers to
discover and connect to other peers – Figure 4.1b displays this.

From the initial division of the design into a network stack and application layer, we may subdivide into
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Figure 4.2: Architectural diagram for the proposed messaging application, with emphasis on the network layer.

further libraries and components. Figure 4.2 shows this breakdown in detail, splitting the application layer into
a user interface and application logic layer and displaying the core libraries within the network stack (shown in
solid colour). Of particular interest are their interdependencies and relationships with one another - especially
within the core networking layers.

Conductor’s purpose is to completely wrap, manage and control all access to WebRTC data channels within
the system, ensuring that creation of new connections is simple. Conductor is used exclusively by Chord to
create new connections and to connect to the Chord network – initially to a super peer hosted on a server, before
it becomes able to negotiate connections directly through Chord by treating this super peer as a proxy. Crucially,
these represent two different ways of exchanging connection data which must be handled and considered differ-
ently. Chord provides Conductor with an implementation of a Conductor channel for each transport it intends
to use for signalling – these contain instructions on how data should be transmitted, parsed and how the system
should be notified that data has been received over a given transport.

Chord is responsible for providing the peer-to-peer overlay system, ensuring that any connected node can
reach any other node in a decentralised manner in a very small amount of operations compared to the network
size. Additionally, key features that it exposes to higher levels are distributed file storage and public key lookup,
which are crucial for building distributed systems which require security. Chord also provides module registration
and messaging capabilities to application developers, allowing custom services to exploit the fast lookups and
reliability that it provides to build additional transports and services.

Shallot is a module built on top of Chord, using the features that it provides to implement onion-routing
without reference to a central directory server. In particular, it makes use of Chord’s capabilities to identify nodes
which are responsible for IDs, global file lookups to obtain nodes’ public keys and its messaging functionality to
tunnel data along several nodes. Shallot has no awareness of any level beneath the Chord overlay network.
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The Message Client Backend is the secure messaging client itself, designed to be implemented as another
module built on top of Chord; with full knowledge of all the functionality it provides as well as that which is
provided by the Shallot onion-routing module. Similarly, Shallot has no knowledge of the network stack below
the Chord network.

The Message Client Frontend is intended to act as a simple user interface over all functions and capabilities
supplied by the message client backend. As such, it has no knowledge about any level lower than this and
interacts purely with the backend.

4.2 Network Abstraction Layer - Conductor

Conductor is designed to drastically simplify connection over WebRTC for higher level application and network
layers by providing a transport-agnostic wrapper around the process of creating connections and data channels.
Additionally, it is designed to be cross-platform by allowing for injection of WebRTC implementations in non-
browser environments. The module is designed to exploit the core set of actions needed to transport data over a
network by defining an interface and a set of primitive actions that allow an implementation to deliver SDPs and
ICE data given a name or id for the desired partner. In addition, Conductor wraps the returned connections to
simplify the process of data transmission, addition of further data channels and to simplify WebRTC’s unusual
disconnection semantics.

The WebRTC protocol requires connection negotiation to occur out-of-band, via the use of some other trans-
port medium to exchange the information needed to open a new peer-to-peer connection. As a result, the API
provided to developers is quite in-depth compared to simpler models of connection such as WebSockets. Basic
usage of WebRTC demands manual handling of SDP and ICE creation and parsing, often introducing a vast
amount of asynchronous set-up code that is virtually identical each time regardless of the transport medium
chosen. One of the key motivations is removing this boilerplate code, and inventing a simpler, more modular
abstraction over the API.

The design of higher levels within the network stack strongly emphasises the importance of being able to
build connections in a variety of different ways while maintaining consistent naming and lookup across transport
protocols. Conductor introduces the concept of Conductor channels - these are objects which implement three
key actions:

1. .send(id, type, data) – transmission of data of a known type to a peer, according to its ID.

2. .onmessage(msg) – reception of data, deciphering the return type, content and sender’s ID.

3. Notification of Conductor upon reception of connection data, as well as the ability to parse this data.

This abstraction allows for higher levels to provide code which implements these simple operations, leaving
Conductor to handle and coordinate the data exchange as needed. These channels are extremely flexible - two
peers could theoretically exchange data to one another using completely different protocols for request and reply
or even chain a series of channels together locally. Conductor additionally exposes some methods to channels
so that they can rename connections, or reject them upon failure. As a design feature, protection of the sensitive
SDP and ICE candidate data is left to the discretion of the channel implementer – it is entirely possible that
transmission may occur over a known secure medium, such as TLS.

Most significantly, this abstraction now allows creation and use of a new connection to be expressed in a
single line, conductor.connectTo("exampleID").then(conn => /*...*/);. This simplifies
the connection process significantly – one of my early experiments uses almost 200 lines of code to open a single
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Figure 4.3: Graphical overview of operation of Conductor channels, as well as its role as a central “directory”
of all open connections. This covers direct request of a new connection – handlers may be used to automatically
perform actions when a connection is received as well.

connection using WebSockets over a relay server as a signalling channel, with no encryption or handshakes. The
channel implementations for each side take slightly less code to achieve the same effect with these additional
features – although Conductor does take more lines of code overall, as the amount of signal channels to be
handled increases it should become more efficient due to its generalised design.

WebRTC’s connection state semantics are rather different from a standard model where disconnection is
typically considered to be a terminal state. Considering the state machine on the WebRTC specification [8], it
can be seen that it is possible to return to a live state from disconnection or failure. This model makes the most
sense for VoIP and video conferencing, but when managing an overlay network topology a definitive and swift
answer is needed when determining whether a link is still open or if a node is still reachable. As a result of
this, Conductor treats failure states as terminal, forcibly ending connections to simplify WebRTC’s richer failure
semantics into a more traditional form.

4.3 Peer-to-Peer Layer - Chord

A modified variant of the Chord protocol is used as the underlying peer-to-peer topology for the network stack.
The standard design is now divided into messages and modules – messages contain fields denoting which module
is responsible for interpreting them. This introduces a greater degree of extensibility by allowing application
developers to design and implement their own protocols on top of Chord. Additionally, self-certifying identifiers
are utilised to allow for simple source verification and authentication without use of a complicated public key
infrastructure. Chord was chosen for a multitude of reasons. It provides the scalability and fast access to any
other node within the system which we require, it’s proven to be extremely reliable [14], there are many reference
implementations in various languages and it provides the distributed file storage which will enable the application
design.
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While the Chord protocol acts as the basis for an extremely resilient and powerful overlay network, certain
elements of its design make it extremely unsuited for modern application design. Traditionally, Chord is de-
signed so that nodes notify one another about application-level events by placing (and removing) files from the
system. This model works well for certain classes of application, such as work division in a distributed com-
putation system or within a content delivery network, but for more traditional applications we require explicit,
targeted communication in addition to file storage. By redesigning Chord to be based upon a message-driven
model, I manage to fully separate the concepts of permanent storage and ephemeral communication from one
another, pushing the former into a simple self-contained module and exposing the latter to make the system more
extensible as described above.

(a) The server node runs a WebSockets server, which it uses
to exchange connection data with new clients.

(b) The client node asks the server for its successor’s ID,
and proxies the needed connection data across the known

server node.

(c) The client node has found its place in the network after connecting to its successor, its predecessor will be
notified of its existence and establish a connection shortly. More connections may be opened via Chord

messages.

Figure 4.4: Overview of server and client roles in the system during entry.
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Because WebRTC requires the use of a server to allow signalling between clients, the design necessitates a
server which is in some way aware of the existence of the peer-to-peer topology. This presents two choices: the
server either maintains a constant connection to one or more known peers and simply acts as a relay, or the server
node is a peer itself, hosting a signalling server that it can use to create external connections. As the former
option is particularly vulnerable to changes in the network topology such as disconnects, my approach treats the
server node as a nominated peer within the system. Figure 4.4 shows how this works in practice, with the server
node acting as an “anchor” for the Chord peer-to-peer network.

Remote calls used by Chord to manage the topology must be carefully handled – if too much privilege or
power is extended to other nodes then an attacker could easily exploit this to disrupt the flow of the network and
deny service to any number of clients. To this end, the stability-oriented variants of Chord’s management methods
are used [22, p. 155]. These procedures act exclusively through information lookup and periodic notification of
other nodes, where topology changes are always verified by the notified node. This allows for the removal of
many of the other operations which do allow direct, unchecked control of other nodes’ routing information;
thereby increasing the defensiveness of the protocol.

4.3.1 Identity Allocation

This implementation of Chord makes use of self-certifying identifiers, a concept introduced in “Routing on
Flat Labels” [4]. The concept allows us to meet our initial requirement of providing source verification and
authentication – by having a node’s identifier be derived through a non-reversible computation on its public key,
we can map any public key in the system against the node to which it belongs. On creation, each node generates
a public-private key-pair for use with any valid asymmetric cryptographic algorithm. A node then obtains its
identity by calculating the hash of its public key using a strong cryptographic hash function.

Once a node has generated an identity it then stores its public key in a file within the network, which can be
accessed by other nodes who wish to contact it securely. The node then routinely checks that the file remains
accessible, and that it’s contents are correct. Crucially, the file’s name is the node’s identifier – this allows
other nodes within the system to obtain the key by performing a lookup for a file named after their intended
correspondent’s ID. This means that a node does not store its own public key within its region of the file system
(it does, however, remember it internally). In the event that a key-file is lost or is somehow modified, a retrieving
node will notice its absence or that the hash of the contained file does not match the file’s name. The node may
then attempt to ask its intended correspondent directly for its key, with the above properties acting as an integrity
check on the transmitted key. Access through the file system is preferred where possible, as it reduces the strain
on the intended correspondent. Similarly, this scheme allows source verification in combination with digital
signatures – a module needs only look up the purported sender’s key to determine if a message’s origin has not
been substituted or spoofed. Crucially, this introduces the required source verification and authentication without
the use of a complex public key infrastructure as in [3].

4.3.2 Message and Module Backend

A combination of message passing between nodes with an extensible module and delegation system forms the
basis for this peer-to-peer network, and proves very effective in practice. A state machine is utilised to determine
the connection state of Chord, which in turn informs the message routing rules – enabling smart proxying and
allowing message transmission and reply across intermediate network states to be easily performed so long at
least one other node is known. The network topology used is a variation of Chord, designed to be more suited to
development and implementation of more traditional applications by moving to a message- and module-based ap-
proach. Additionally, the protocol must be adapted for usage in environments where there are strong restrictions
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on connectivity – in particular, WebRTC, where it is essential to already have some means of communicating
with another client before opening a direct link.

n.Pred
ID=3

Node n
ID=6

Responsibility(n) = (3, 6]

ID = 4
Module =  Amodule 
Handler =  Thing 

 Amodule 
 Thing
 Foo

 Thing2

 FileStore 
 Func
 Bar

 Store

Figure 4.5: Diagram of the message and module system in action. Nodes are responsible for handling all mes-
sages whose IDs are within their area of responsibility. Messages are parsed based on “module” and “handler”
fields upon reaching their destination. In the above, Node n consumes the message as 4 falls within its range of
responsibility – it then selects the correct module and function from its internal registry to act on the message.

Initially, the design was built to send only simple JSON (JavaScript Object Notation) objects between nodes,
containing a message field and destination. The simplest test of operation was performed; nodes would consume
and print the output of any message whose ID matched their own. While this helped in the initial development
of Chord, as the design progressed it became clear that this model was too simple, and would not suffice with
regard to the network’s requirements. One of the most important requirements of the peer-to-peer topology was
to provide extensibility, as well as different treatment of packet classes. For instance, the system needed a clear
separation between Chord’s control traffic and any other arbitrary use case – despite both being governed by the
same routing and handling rules.

The design of Chord was then divided into modules: objects with a known name to match packets against, and
which provide an interface that allows Chord to .delegate(...) handling of (and reaction to) incoming data.
Transferred packets would be augmented with “module” and “handler” fields, which would be used to indicate the
intended module and specified action within that module. Modules would be registered through a central manager
within Chord, and this functionality would be exposed to higher level application developers. Completion of the
basic module system then allowed classification (and sub-classification) of packet varieties, enabling the design
and implementation of the Remote Procedure Call framework as well as the initial implementation of Chord’s
routing algorithms.

Similarly to how standard Chord requires that a node n is responsible for all files inside the identity region
R = (predecessor(n), n], the base concept of the messaging backend is that a node is responsible for consuming
all messages which are directed anywhere within R. This is shown by Figure 4.5. Message routing rules during
this stage of development were extremely simple: if a connection to the destination exists, then forward the
packet immediately. If the message falls within R, then direct it to the proper module – else, forward to the
closest preceding finger for the message’s destination ID. During connection, these rules did not account for the
case where the successor or predecessor had not yet been identified – special handling was needed in this cases for
the formative stages of the network. When trying to develop fault-tolerance and recovery from disconnections,
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Figure 4.6: Finite State Machine governing any node’s state of connectivity. Although backup successor lists
(the state “Full-Secure”) are modelled for as suggested in [22] to achieve a more robust system, they are not
implemented in the final design.

these rules became far too complex to maintain; it was determined that modelling the system as a finite state
machine was necessary to make routing feasible in the face of high network churn. With reference to the Chord
specification as well as consideration of WebRTC’s requirements, the system was modelled as in Figure 4.6.
Each state then corresponds to a choice of node to pass a message over, as displayed in Algorithm 1.

In addition to its use for routing, the state machine is also used to enable reconnection to the network. While
a partially connected node (i.e. one which is connected to its successor) is guaranteed to be brought into the
network to a full state by Chord’s routing algorithms, external nodes are aware of nodes within the network
but are not guaranteed to be known themselves. Nodes which are truly external (and are totally unknown to
nodes within the ring) must go through the initial connection procedure once more, but nodes which believe
themselves to be known have a high likelihood that another node “remembers” them and can bring them back to
full connectivity. In the event that this does not occur, the node waits for some period of time and rejoins through
the initial connection process. The “Full - Secure” state represents one of the proposed enhancements by Stoica
et al., where nodes would obtain lists of (and connections to) the next available successors in the event that their
true successor fails; my present design neither gathers nor acts upon this information.

The use of WebRTC imposes strong connectivity constraints within the system – in essence, a node requires
connections to at least one other node to create more connections. Although this has less impact when simply
forwarding a message, great care must be taken when another node is expected to be able to reply. This is es-
pecially significant when using Chord itself as a signalling channel – messaging another node such that a reply
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can be routed back relies on the knowledge of how how best to contact them from the current state. To handle
this initially, the chord signal channel routed every piece of connection data via a proxy node, chosen according
to the current state. Although this approach was admittedly extreme, it was the basis for the next iteration of the
message backend’s design.

Data: Own ID “n”, Message Content, Message Destination
Result: Eventual delivery to intended recipient

1 if Direct Connection to Destination then
2 send message content to Destination;
3 else if Destination = n or State = Disconnected then
4 // Destination is a direct match, or n is effectively a 1-node ring.
5 direct message content to appropriate module;
6 switch State do
7 case External
8 // We are connected to at least one node.
9 // Assume that it is in the Chord ring.

10 proxy message content over first available connected node;
11 end
12 case Partial
13 // We are connected to our known successor.
14 // Assume again that it is in the Chord ring.
15 proxy message content over successor(n);
16 end
17 case Full - *
18 if Destination ∈ (predecessor(n), n] then
19 // Only state where we can calculate the region R.
20 direct message content to appropriate module;
21 else
22 // Choose the best finger to send the message along.
23 send message content to closestPrecedingF inger(Destination);
24 end
25 end
26 endsw

Algorithm 1: Final message routing rules.

00{
"s": "...",
"d": "...",
"...": "..."

}

Figure 4.7: Sample of Chord’s packet format.

The final design of the message core builds the capability for
message proxying into Chord itself as part of the message design,
as well as allowing for packet validation across multiple packet
formats and hop limits on messages. The format, roughly, is a
two byte version code, where the standard format operates using
JSON (Figure 4.7) – full discussion of the packet format itself is
provided in Appendix B. This complete format redesign required
all existing modules to be adapted, but massively simplified the
semantics for ignoring and replying to messages – particularly
where proxying is concerned. It is worth noting that whenever a
message needs to be proxied, the likelihood that the message is lost sharply increases. In essence, proxying is
a last resort “heuristic” for directing a message to the rest of the network – it is entirely likely that Chord could
make the wrong choice, particularly when in the “External” state.

The choice to allow multiple packet formats is deliberate – while JSON is easily readable for both humans
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and machines, it is relatively space expensive compared to raw binary formats. Having the capability to introduce
additional packet versions into the system allows for not only different formatting to be handled, but potentially
different classes of packet altogether. Some of the applications of this are discussed in Section 8.2.

4.3.3 Remote Procedure Call (RPC) Framework

As JavaScript lacks the RPC functionality typically built into more established languages such as Java, the design
requires that we build one from scratch to utilise the Chord message transport. Although initially this function-
ality worked in the simplest possible way, it has been extended and redesigned with multiple retries, effective
error handling, configurable timeouts and at-most-once semantics. These features help to make the system (and
all modules built on top of the framework) more robust and fault-tolerant.

Modules make use of the framework by subclassing RemoteCallable, giving them access to the ability
to make, answer and fail any remote calls directed towards the module. Every call made from the framework is
given an integer ID, and two functions are stored locally which resolve or reject the call – representing receipt of
an answer or error, respectively. In the interim, the caller is handed a new Promise(), which is a JavaScript
language construct representing an asynchronous action. The message’s handler is set as the name of the method
being called – the module on the callee’s node is then responsible for responding to this as it sees fit, but it must
reply with an error or answer packet. When the caller receives a packet with the handler “answer” or “error”, it
looks inside of its internal storage object and resolves or rejects the initial Promise with the given answer or
error.

To handle errors and packet loss, timeouts are used so that a call is said to have failed if no answer is received
within the allotted time. A call may then be retried, or the call can fail altogether if the module designer so
wishes. However, consider both cases where a message is lost en-route to the callee, and where the answer is lost
while being sent back to the caller – in the first instance, retrying the call is likely harmless, yet in the second case
this call could affect state or return a different answer if retried! As a countermeasure, nodes cache all answers
they return for a configurable amount of time. Because of this, if a call is retried at any stage then the cached
answer can be immediately returned, requiring no further computation and preventing unintentional mutation of
state.

From a security perspective, developers are free to expose only a subset of a module’s functionality remotely
if they wish to reduce the attack surface exposed to adversaries. Ideally however, the application developer
should either make remotely available procedures idempotent, or minimise any unverified mutation of state
where possible.

4.3.4 Bootstrap Channels

As demonstrated in Figure 4.4a, initial connection to the network is performed by exchange of data over Web-
Sockets, a datagram focused extension of HTTP. Rather than using the WebSockets server as a simple relay,
the server is treated like any other node and the new client is able to join the network using standard Chord
algorithms.

To do this, the server maintains a reusable Conductor Channel around a WebSockets server, while clients
create a throwaway channel which acts as a WebSockets client for signalling. For simplicity, clients create a new
channel whenever they desire to connect to a server. On creation, a client channel connects to the WebSockets
server, and exchanges public keys with the server, from which the two can derive one another’s identities. The
server then encrypts an asymmetric cryptography key using the client’s public key and transmits this, finishing
initialisation. The server attaches this data to the record of the WebSockets connection that the client opened.
The channel prevents Conductor from transmitting any data until set-up is complete.
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Use of an asymmetric cryptographic key is particularly important here. Establishing a secure WebSockets
server requires keys and certificates, and a simple server may not have access to this. As a result, all data sent
between client and server is sent in the clear, and must be encrypted – this becomes an even greater requirement
with regard to the sensitivity of SDP and ICE data. Exchange of SDP and ICE data over the channel may now
occur, using this shared secret key for encryption and decryption. Finally, the client has a secure WebRTC
connection to the node hosted by the server.

4.3.5 WebRTC Connection Negotiation over Chord

Crucially, a node needs only to know about one node within the network to establish further connectivity. Tak-
ing inspiration from Vogt, Werner, and Schmidt in [28], we may treat the Chord network itself as a Conductor
Channel: all further signalling negotiation of connections is performed exclusively through the Chord network.
However, a newly joining client remains outside of the Chord ring, and is only known by a single node – stan-
dard messaging rules will completely fail to direct any replies to the new client. To resolve this, proxying was
introduced to the design, as demonstrated in Figure 4.4b.

Although WebRTC Data Channels are secure on a hop-by-hop basis due to the use of DTLS, the data must
pass over several nodes to reach the intended recipient. Data routed across an adversary could be read or modified
accordingly. As a result, encryption of SDP data - again - must be employed to prevent intermediate nodes from
interpreting the sensitive data. Before connecting to one another, nodes perform a handshake across the network,
exchanging keys and IDs as in the bootstrap process. As the initiator may not know the correct ID of the node it
wishes to connect to, this handshake is particularly important for confirming the identity of an intended partner.
While the handshake is ongoing, the module queues up all messages which Conductor tries to send, and acts
upon them once the handshake completes.

Initially, all communication through this channel was routed across a proxy chosen according to the current
state, through similar rules to those in Algorithm 1 (except that in a state of full connection to the ring, the
node’s successor is chosen). Although this scheme worked, needlessly proxying all conductor traffic proved to
be a waste of resources and time for nodes which were already in the network.

To alleviate this issue, proxying rules and capabilities were moved from this module into the messaging layer
itself, as discussed in Section 4.3.2. Although the basis for this choice was sound, it revealed an underlying
flaw in the implementation and design of this signalling channel. Consider the situation in Figure 4.4c where
a new node n has successfully joined on to its successor m. The node which was previously m’s predecessor,
denoted p, learns from m that n is its new successor, in turn this node tries to establish a connection to n to fully
bring it into the network. However, p has no idea that n lies outside of the network and does not send any of
the signalling traffic through a proxy. This data reaches n successfully, but when n tries to reply to p using the
standard rules it finds (without fail) that p’s ID falls within its region of responsibility and consumes the reply.

Two solutions were considered for this. p could either proxy signalling traffic across its old successor m
in the event a new successor is discovered, or n’s module would simply ignore all non handshake initialisation
traffic if the ID was not an identical match. In practice the second approach was taken – it was not only a far
simpler implementation, but it required no changes to the routing rules or for the module to remember any data
about the network’s topology. Once this change was made to the design, Chord could freely establish connections
using any known node within the network, massively reducing reliance on a server for signalling.

4.3.6 File Storage

In contrast with the standard design of Chord, we move the distributed file system from the core of the system’s
event model to simply being a service built on top of the messaging layer. Additionally, since the file system is no
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longer overloaded to represent both storage and notification, we are now able to further specialise the module by
introducing the concepts of authentication and ownership of files. Previously, the mixed semantics would have
made an authentication scheme troublesome, particularly when multiple nodes attempt to direct notifications to
a single target node using the same file key.

Initially, this module operated in a very simple, trusting way. When asked to store any file, the responsible
node would simply overwrite the contents of its internal storage at that key’s location! This has risks for pro-
tection of public keys within the network – it was crucial that the design was adapted to prevent malicious users
from overwriting important state used by other nodes. To combat this vulnerability, it is essential to introduce
the concept of file ownership.

Broadly, what we desire most from our implementation of ownership is to ensure that only the node which
first places a file onto the network has the right to edit, replace or explicitly delete the file matching that key.
Transference of ownership to another node is a secondary goal. The simplest way to do this is by making use
of some shared secret, such as a random string, between the owner and the storage location. This shared secret
can then be treated as a cryptographic key for a symmetric algorithm such as AES, and can be used to verify the
origin of updates. Additionally, this allows for transference of ownership by communicating the public key to
another node. We can now define the procedure for storing files:

Node n Node m

{K, V, Pub_n}

Store (K,V)

{STORE_OKAY,
KHash, VHash,

seq, Pub_n(S_n,K)}

<<Success>>

{K, V, Pub_n}

Store (K,V)

{FILE_EXISTS,
KHash, VHash,

seq}

<<Failure>>

Figure 4.8: Sequence diagram for stor-
ing a file.

To place a file onto the network, a node n is responsible for send-
ing the key-value pair representing the file name and data, K and V
respectively, as well as its own public key Pubn to the node responsi-
ble for the ID Hash(K), defining a node’s responsibility identically
to within the messaging backend. We shall denote the intended recip-
ient as node m. When m receives a remote call requesting storage of
a file, it recomputes the hash of the file’s key – if the message was
routed to it erroneously (for instance, if an adversary intends to over-
whelm m), then it forwards the request through the network instead of
parsing it. Node m then checks its internal storage tables – if an entry
already exists for Hash(K) then the initial call is replied to with an
error code. Crucially, completely overwriting a file is not allowed at
this stage – it is expected that a service which owns a file would be
aware of this fact and only choose to update the file. If no file exists,
then m stores the K,V pair locally and generates a secret 16-byte
ownership key, Sn,K – i.e. n’s secret key for the file K. This is proof
for m that n is indeed the owner of the new file in any future updates.
Node m then answers n’s call with an object including a success code,
the file’s current hash (Hash(V )), the initial sequence number (0) and
encrypts this ownership key with n’s public key (Pubn(Sn,K)). n is
then free to decrypt the secret ownership key using its private key, and
then stores this value for future updates.

However, there is a high likelihood that a client which owns many files across the network could disconnect
at any time. For long running networks with high amounts of churn and file ownership per node, this would
eventually lead to a high quantity of “dead files” where their owners have long since left – in turn preventing
reuse of their owned file keys. n responds to a successful file store by running a periodic task, sending a keep-
alive message to the current owner to ensure that the file remains accessible. Files on the network are held for
a configurable time window – if the file’s host receives no keep-alives during this time period, then the file is
removed from storage. This is additionally employed as a counter measure for nodes which desire to own a vast
selection of useless files to disrupt the network and impose high storage costs, by requiring that they maintain a
constant stream of network traffic in exchange.
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To update a file, we require a secure design which utilises the secret ownership key to prove that an update
did, in fact, originate from a trusted node. At first, the design had the file owner send a random string s along with
its encrypted form Sn,K(s) – however this proved wholly insufficient after some thought due to its vulnerability
to replay attacks; an attacker could send a previously seen file update command to reset the file to an earlier state.
Two solutions were proposed to this: 1) have the storage node send a challenge to any node which wishes to
perform an update, or 2) maintain an internal sequence counter which increments on each side per update, where
the storing node rejects any updates with an incorrect sequence. Option 2 was chosen, as I came to conclude that
challenges being sent across the network would increase the time taken and complexity of updating a file. To
update a file, the following procedure is implemented:

Node n Node m

{K, V, Proof}

Update (K,V)

{UPDATE_OKAY,
KHash, VHash,

seq}

<<Success>>

{K, V, Proof}

Update (K,V)

{NO_FILE} or
{BAD_UPDATE,
KHash, VHash,

seq}

<<Failure>>

Figure 4.9: Sequence diagram for updat-
ing a file.

Node n wishes to update a file, {K,Vold} → {K,Vnew}. As proof
of its identity, it produces the string proof = Sn,K(Hash(Vold) +
sequence) (where + denotes concatenation) by using Sn,K as a sym-
metric encryption key. n then directs a .update(...) call, sending
{K,Vnew, proof} along with the tag and initialisation vector used for
encryption to the node responsible for Hash(K) – we shall denote
this m as before. Upon receipt of this call, m decrypts the proof us-
ing the stored secret key and sent initialisation vector, before verifying
against the included tag. If the unpacked hash matches that generated
by the stored file Vold and sequence ≥ sequencem, m’s local copy of
the sequence number, then the file is stored locally and m updates its
sequence for the file, sequencem = sequence+1. n is sent a success
code, along with the hash of the new file contents and the updated
value of sequencem. If decryption fails or either piece of data was in-
correct then a generic error code is returned, as well as the hash of the
stored file and the current value of sequencem. Note that this does not
need to be kept secret – this takes the place of a traditional challenge.
The main advantage gained by this approach is that n need only be
reminded of either value if it is not the only owner of a file, reduc-
ing ring traffic and the amount of time needed to exchange challenge
information while still defending against replay attacks.

As the network grows and each node’s region of responsibility
changes, it becomes important for nodes to redistribute files which they hold – not only to alleviate their burden
of storage, but primarily so that each stored file can still be located. To do this, nodes check to see which files they
hold which fall outside of their responsibility both as a slow periodic event and in response to changes to their
predecessor within the network topology. This follows from the definition of a node n’s responsibility, Rn =
(predecessorn, n] – it is clear that the only way to change a node’s responsibility is to change its predecessor
node. In either of these cases, nodes scan over the IDs of all files in their storage. If they are no longer the
designated storage location of the object, then they identify the node who does have responsibility of the item
and negotiate a transfer of the object, the current sequence number and the secret ownership key. This can be
performed securely by obtaining the destination node’s public key and encrypting the data so that only they can
read it.

In its current state, the file ownership and authentication schema is vulnerable to several attacks – these are
discussed in greater detail in Section 6.2.1. This design is preliminary – future extensions and modifications that
would alleviate these problems are discussed in Section 8.2 as well as alongside the attacks themselves.
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4.3.7 Improvements over Chord

In addition to the domain-specific observations and modifications to Chord presented here, some optimisations
to the algorithms present in the protocol itself are proposed.

The stability oriented algorithm for updating a finger table [22, p. 155] can be enhanced to make finger
pointers more accurate in fewer lookups, by recognising better approximations as they become available. For
a given node n, when periodically updating a random entry i within the finger table, if the discovered pointer
p is a better fit than finger[i] (i.e., p ∈ (finger[i], n + 2i] ) then the system sets finger[i] = p. The system
then increments i, and repeats until p is no longer a better approximation for finger[i] or the end of the table
is reached. This process may also be conducted if, say, n is connected to by p as one of its fingers. Although p
may not be the canonical “best fit” for successive finger table entries, it is indeed a closer approximation to the
theoretical best finger pointer, n+ 2i. As a result, choice of the next hop for message delivery is still guaranteed
correct and we are likely to see any messages to further IDs delivered in fewer hops.

To maintain correct routing, an additional invariant upon the finger table is maintained – this proves par-
ticularly important when transitioning between different levels of connectivity, such as after responding to a
predecessor disconnection event. As message routing relies on the .closestPrecedingFinger(...)
algorithm, for a node n we require that every finger in the system falls within the region (n, predecessor(n)].
This algorithm is found within the Chord paper [22]. When any change occurs to the predecessor, Chord scans
the finger table from the end, setting any fingers outside of the above region to equal predecessor(n). Although
other implementations may not rely on this invariant holding true to operate correctly, the check is inexpensive
to perform, and needs only to occur if n’s predecessor disconnects or is replaced.

4.4 Onion Routing Layer - Shallot

Shallot provides onion routing built on top of Chord’s extensible message delivery by adopting a hybrid model
between Tor and I2P’s protocols. Route creation and packet transmission are performed using algorithms almost
identical to those utilised by Tor for route generation and data transmission. This maintains perfect forward
secrecy by mimicking Tor’s well-established design, with the only significant divergences lying in circuit ID ob-
fuscation and that all symmetric keys are generated by the source of a link rather than by successive handshakes.

As a module for Chord, Shallot’s design takes a lot of influence from the design of I2P. Unidirectional links
are adopted using a circuit-switched approach for multiple reasons. Primarily, this approach embodies simplicity;
making it particularly suited for proving onion routing’s feasibility in this environment. More importantly, it lends
the system a far higher degree of fault tolerance. As the amount of nodes in the network grows sufficiently large,
it becomes increasingly unlikely that each directional link between a pair of endpoints share any relay nodes.
Following from this, the disconnection of a relay node is less likely to close both routes simultaneously.

Drawing further inspiration from I2P’s design, Shallot provides datagram-focused service to applications
rather than Tor’s stream-based approach. This makes usage in higher-level applications far simpler as developers
are not required to handle framing of their data, but sacrifices the generality and power afforded by streams.
Additionally, this design is simpler to implement due to the underlying datagram transport provided by WebRTC
and Chord messages.

Choosing a route through the network is made extremely simple by the key-based-routing capabilities of
Chord. To generate each (non-terminal) hop of a route, a user needs only to generate a random ID within the
key-space. They then determine which node is responsible for this ID, look up its public key within the file
system and generate a symmetric public key which will be communicated to this hop. Shallot verifies that each
public key obtained hashes to the responsible ID.
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Once a route to the destination has been obtained, the client then begins building a circuit across the generated
route. To do this, Shallot generates a random circuit ID for the first hop, and creates a build packet directed at the
ith hop containing the symmetric key attached to that hop – encrypted using the public key of that node. If i = 0,
then the client augments this build packet with the circuit ID as described below in Algorithm 3. It is important
to note that the source node knows only one of the many circuit IDs along a route, as these are negotiated by the
relay nodes themselves. For all other values of i, the client appends a destination field to the build packet so that
the i − 1th node knows the next destination when it becomes responsible for augmenting the packet. The client
then wraps the build packet with all propagated symmetric keys as in Algorithm 2, keeping this data secure from
all but the i − 1th and ith nodes. The final node is sent a finalisation packet containing the source node’s ID
once the route has been extended up to the end – as before, this is onion wrapped to ensure that only the final
node can determine its role in the path. Shallot performs each phase sequentially, and once every phase of route
propagation completes it returns a usable Session object to the application.

Data: Symmetric Keys k, First Hop f , First Circuit ID c, Data d, Index (Current Route Length) i
Result: An onion wrapped message d for delivery over f , protected circuit ID s

1 // Generate an initialisation vector for encryption - this will be
carried alongside c to obfuscate the circuit ID over each hop.

2 iv ← randomBytes();
3 if i = nil then
4 i← k.length− 1;
5 end
6 // Now, encrypt for each hop in route from last to first, mirroring

unwrap order.
7 while i ≥ 0 do
8 d← symmetricEncrypt(d, k[i], iv);
9 i← i− 1;

10 end
11 // Protect the circuit ID and encryption IV to be read by the first

hop - the latter must be tunneled across the whole route.
12 s← f.pubKeyEncrypt(c+ iv);

Algorithm 2: Algorithm for onion wrapping a message.

Although most of Algorithm 2 does not bear explanation as it is identical to the procedure followed by Tor,
the decision to multiplex the circuit ID and initialisation vector together may seem alien. We have two goals to
consider: not only do we need to communicate the next circuit ID so that the next hop knows how to handle
the packet, we also need to hide this sensitive data as, unlike in Tor, we do not have a service like TLS over
Chord. However, simply encrypting this data is insufficient – while it will not be decryptable or directly readable
to another node, attackers will be able to see patterns in traffic flows as the secured circuits will appear identical
each time without mutation by some salt. As it happens, this doubles as an efficient way to communicate a
different initialisation vector for every onion-routed message.

Shallot makes use of 2 classes of packet between nodes, relay and build packets (these are analogous to Tor’s
create and relay cells). Strictly speaking, these aren’t specialised packets – and are in fact calls made through
RemoteCallable’s RPC framework to cheaply introduce reliability and error detection. This design choice
also prevents the owner of a link from having to periodically send “pings” along an active onion route to check
for liveness.

On receipt of a relay packet, Shallot decrypts the circuit ID and IV from the end of the packet using its
private key from Chord, and then uses the circuit ID to determine which symmetric key it will use to decrypt
the message body. After decrypting with the correct symmetric key and IV, the module then determines the
format of the contained packet: either another relay packet, an incomplete build packet, a finishing packet or
a content packet. Additional relay packets are sent to the next known hop, with the outbound circuit ID along
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the chain being replaced and secured as in Algorithm 2. An incomplete build packet informs the receiving
node what the identity of the next node along the current circuit is – this build packet is then augmented as in
Algorithm 3 with a new random outbound circuit ID, before being sent to the new destination. A finalisation
packet informs a Shallot client that it is the exit node for a route, while reveling to it the source node’s identity
– alowing a return link to be opened if desired. The exit node then fires the "receiveConnection" event
with a new RecvSession(...), and connects this to the current circuit. Finally, content packets are passed
as data to the RecvSession attached, firing an event for listening applications.

Data: Own ID id, Next Hop f , Next Circuit ID c, Message m, Secured Symmetric Key m.k
Result: A complete build packet m

1 // Remove the field specifying the destination, f.
2 m.dest← nil;
3 // Place the next circuit ID into the packet so that only f can read

it.
4 // Include our node ID so that f can verify this packet’s origin.
5 m.circ← f.pubKeyEncrypt(c+ id);
6 // Sign this packet to prove:
7 // a) we received this packet from further up the path
8 // b) the key has not been modified outside of the route
9 // c) the new circuit is part of this path, and was chosen by us.

10 m.verif ← id.privKeySign(m.k +m.circ);
Algorithm 3: Process for augmenting a build packet.

Completed build packets require signing by the last node in the current path as shown in Algorithm 3 because
we cannot leak any information about the source node. This guarantee is sufficient – any alterations to the
intended symmetric key will lead to the source node receiving an error notification and being unable to complete
the route, closing it instantly. On receipt of this class of packet, a node uses its private key to decrypt m.k and
m.circ from the received message, obtaining the inbound circuit ID as well as the attached symmetric key and
knowledge of the identity of the last hop. With the last hop’s ID, the recipient node is able to obtain the last hop’s
public key and verify that the message content has not been modified on the Chord network – if the signature is
invalid, then the new circuit entry is discarded.

Key lookup through the file system gives us a very strong basis for verifiability provided, of course, that
the file system is truly secure. In the event that records on the file system are compromised, then Chord’s self-
certifying identifiers allow Shallot to detect that any tampering has occurred and inform the application that
obtaining a route has failed – how best to handle this is left to the discretion of application developers.

Crucially, modules may send all, part or none of their traffic across onion routes – this allows developers
to make specific trade-offs between performance and security guarantees within their designs. A developer
shouldn’t be forced to onion-route traffic which doesn’t need it. As a result, access to the standard Chord message
and module system is not hidden in any way; allowing developers to potentially gain performance by making use
of onion-routing selectively.

Presently, a connection is said to be closed if a message transmission fails even once – although this is
extremely primitive, this does allow detection of failure to be performed reliably. One caveat of this approach is
that the receiving side of an onion link is unable to determine the liveness of a connection.

32



4.5 Message Client Backend

Building upon all of the services defined in Chord and Shallot, we now have a feature set that will enable the
design of a messaging client that fits most of the requirements introduced in Chapter 3. The proposed design is
based heavily upon Secure Mailboxes, with strong reliance upon the distributed file system provided by Chord.

Secure Mailboxes are a concept introduced by Liu et al. in “Tor Instead of IP” [13] – in their design, clients
put and get messages from secure mailboxes through onion links, placing a buffer (and layer of indirection)
between most forms of direct communication. These can be modified to follow the publisher/subscriber model
within the above system – any node which wishes to post a message to a mailbox opens a unidirectional onion
link and sends the data across. The mailbox then, in turn, maintains unidirectional links to all nodes which have
subscribed to it and forwards this message down each onion link. In fact, the service provided by mailboxes
provides a very suitable conceptual basis for communication – both 1-to-1 and in groups.

One of the key requirements for users is the ability to attach a temporary, human readable “name tag” to their
cryptographic identity within the chord network. To do this, users place publicly available files onto the network
linking their ID to their current name and vice versa, enabling lookup on both keys. Crucially, the node must
own each of these file records – no other node can be allowed to modify or alter these files, otherwise it would be
trivial to impersonate a named user. The same design can be used to connect groups with the mailboxes which
they reside upon.

To facilitate fair distribution of mailbox selection, every node in the system must host at least one mailbox,
free for any other node to make use of. All messages sent to mailboxes, consequently, must be encrypted by a
symmetric key derived from the group name and password, with the group name included in cleartext as part of
each message to aid the client in filtering messages and selection of keys for decryption. 1-to-1 communications
are performed using the mailbox held by either participant, with an ephemeral password agreed out-of-band. The
design additionally allows for mailboxes to subscribe to one another, allowing users to hide behind extra layers
of indirection if they feel the onion routing scheme is not sufficient on its own.

It is, however, unclear how to implement global advertisement of users who desire conversation – this runs
contrary to some elements of the design, such as file system authentication. Perhaps a suitable scheme would
have the global user list be held and maintained by one node through some leader election protocol (such as the
bully algorithm) – this may prove incompatible with the defined threat model, however.

4.6 Message Client Frontend

The frontend for the message client would be a simple HTML and JavaScript user interface, designed much in the
style of IRC. As the design of this layer is relatively unimportant (in that it does not directly impose constraints
on the feature set of lower layers) and this stage of the implementation was never reached, no design specifics
are presented here due to time constraints and lack of necessity.

4.7 Summary

Over this chapter, I’ve shown the complete architecture and design for the network stack, the purpose of each
module in the system as well as how the final design meets most of the requirements defined in Chapter 3. Addi-
tionally, I’ve shown how my designs have evolved over time to handle challenges revealed by the implementation
and imposed by the environment; such as WebRTC’s connectivity constraints and edge cases within the various
signalling channels. Certain changes, such as the message and module backend, optimisations for Chord and the
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state-machine formalisation have been shown to help create a more reliable and extensible system for usage in
higher layers of the stack.

The design of a hybrid onion routing scheme between Tor and I2P was detailed – elaborating on the reasons
behind such design decisions as unidirectional tunnels combined with circuit-switched route generation. Finally,
the core concepts behind a potential implementation for the messaging client were shown. With reference to the
network stack features they relied upon, feasible ways to meet many of the design requirements were described.
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Chapter 5

Implementation Details and Limitations

Working from the design introduced in Chapter 4, this chapter focuses on many of the points encountered
while implementing the network stack such as any difficulties, the choice of particular cryptographic algorithms,
limitations relative to the design and the limitations of the design itself. Additionally, this chapter will discuss
my testing methodology for the project. In most cases, potential methods to improve current designs and to
implement and provide missing functionality are suggested in Section 8.2.

5.1 Difficulties Encountered

JavaScript, although mandated by the use of WebRTC and the choice of deployment environment, lacks many
of the features that would have helped in the development of a large-scale distributed system such as language-
level remote procedure calls. Additionally, in JavaScript all numbers are stored in double-precision floating
point representation, giving a maximum safe integer size of 253 − 1. By contrast, Chord requires the usage and
manipulation of arbitrarily large (n-bit) integers. This required me to develop my own implementations of these
crucial features.

The decision to work with a unified codebase for both client and server deployment (the browser and Node.js
respectively) presented some technical challenges – although it did make the design and implementation easier
overall. In particular, Node.js has no native support for the WebRTC protocol or API: any implementations of
this are provided as open-source C++ addons by the community. As a result, my designs had to be adapted to
handle multiple “adapters” for this functionality. Two of these such adapters were used within the project – one
to unify the API differences between browsers, and one to introduce WebRTC functionality to Node.js. While
the former was mostly perfect for my uses, the latter had fallen behind the W3C specification for the WebRTC
API [8]. As a result, I had to spend a portion of time within the project on modernising this package’s API.

Integration of multiple cryptography libraries throughout the project was a particular source of trouble. Al-
though these modules perform ostensibly similar tasks and operations upon data, the input and output formats
between any pair of modules varied so wildly that reconciling these differences took large amounts of trial and
error alongside inspection of their respective code bases. The use of several different libraries was necessitated
by my particular choices of hashing and cryptographic algorithms, but had I known how much trouble this would
introduce I’d have altered my design sooner.
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5.2 Conductor

Presently, Conductor does not handle efficient deallocation of connections through reference counting or any
similar management scheme. As a result, handling of connection lifetimes is completely left to higher-level
applications, making its use considerably less convenient. Conductor detects disconnection by watching for
any of the 3 (recoverable) failure states in WebRTC, “closed”, “failed” and “disconnected”. A more mature
system would likely include some form of handling for the concepts of temporary and permanent disconnection
– potentially by making use of some configurable timeout period to demarcate the two states.

Additionally, Conductor is presently unable to detect disconnection events in this fashion in Mozilla Firefox
– this is a bug within the browser itself, which has been present since 2013 [18]. For other browsers, neither
Safari nor Internet Explorer (Edge) are compatible with the protocol – this heavily impacts the browser cross-
compatibility of any dependent services.

5.3 Chord

Implementation of Chord required much deliberation on the choice of cryptographic algorithms within the
scheme with regards to modern security findings. While the Chord paper makes (and recommends) use of SHA-1
for hashing with a 160-bit identity space [22], it has come to light in recent years that the algorithm is fundamen-
tally insecure. In particular, an attack by Stevens, Karpman, and Peyrin presented a significant breakthrough for
cryptanalysis of the algorithm – by running attacks on a relatively cheap, high price/performance ratio Graphics
Processing Unit (GPU) cluster, they estimate that a full SHA-1 collision could be obtained for between 75K$
and 120K$ worth of computation time in late 2015 [21]. Not only is this below the cost bound they claim was
expected to be achieved by 2018, this is deemed to be well within the resources of a nation-state or criminal
syndicate. Within my design, if a collision can be found against the identity scheme then it may be possible to
fool the various verification systems in play. Choice of a hashing algorithm for use in Chord must also balance
the width of the identity space against the security of the chosen hashing algorithm – an m-bit space requires
a finger table of size m, when running many connections could impose a high resource and bandwidth cost on
browsers. For these reasons, SHA3-224 is chosen as the base hashing algorithm within the system – no known
attacks exist upon it, the design aims to maintain collision resistance, and the key-space is not significantly wider
than that recommended by Stoica et al.

The asymmetric cryptographic algorithm chosen as the basis for Chord’s identity scheme is RSA-1024 for
multiple reasons. The algorithm is well-understood, and it relies on computational problems which are deemed
sufficiently hard to thwart direct cryptanalysis. The smallest available key size is chosen due to the performance
cost that RSA imposes, both to generate a new key-pair at initialisation and for encryption and decryption of
data. In practice, key-generation does impose a very high, variable time execution cost at initialisation within
the browser, likely due to the JavaScript environment. Throughout Chord, this is used in combination with AES-
GCM-128, a symmetric encryption algorithm, where faster data encryption is needed. This algorithm is far faster
and is similarly proven throughout its long history, relying on RSA to encrypt the shared symmetric key – this is
used primarily within the Conductor Channel implementations, in a manner similar to TLS.

In practice, the adapter for WebRTC within Node.js has proven temperamental at best. While JavaScript is
designed to be perfectly safe and sandboxed, this open-source extension has been notoriously buggy at the most
inopportune times. Segmentation faults arise for no reason (despite the fact that this should be an impossibility
within a safe language like JavaScript), crashing the Chord server at unpredictable and inappropriate times. For
instance, refreshing a webpage while connected to the server (a normal action as far as users are concerned) will
crash the connected server with a 100% rate of reproduction. As a result, the system is nowhere near as stable as
a finished product should be – I deemed it far beyond the scope of this project to repair the internal C++ code of

36



an open-source project.

At present, the message- and module-based delegation system expects that all nodes within a network run the
same set of services and modules. The design of all modules presently makes the assumption that any message
can be served and handled by the directed recipient – a more heterogeneous system would require some additional
work, but I believe it would be possible to adopt such a paradigm.

The proxying functionality within the message core currently assumes that a message will be proxied at most
once along its path to a given destination. In particularly odd cases associated with high churn, it is likely that a
message could require multiple proxies to reach the core ring; in which case the receiving node will need to know
the complete proxy list to reply reliably. A valid approach might be to modify the packet format to account for
multiple proxies (up to a sensible limit). The messaging rules also make the assumption that proxying over any
node is guaranteed to eventually direct the message to the chord ring – this guarantee is mostly sensible, except
in the “External” states where it may make more sense to directly ask any connected node about its current state
and choose the “most connected” partner as a proxy.

In the event that a node fails to create a connection to another node, then my present implementation of Chord
does not account for this and detect failure. The functionality to handle this is programmed into Conductor –
the trouble arises when trying to set a sensible upper bound for a timeout and connection establishment time
as the network grows. Similarly, Chord does not actively close any connections which are not needed due to
Conductor’s limitations, potentially making its operation very expensive at scale.

Within the file system, the implemented process for securing sequence numbers differs slightly from the
initial design. Due to difficulties surrounding representation of numbers within JavaScript, the sequence number
and circuit ID are encrypted in JSON format for simplicity. Additionally, files are not replicated across the file
system to provide reliability, due in part to time constraints, and due (more significantly) to security concerns
introduced by file ownership and authentication. Implementing this key feature would make the system more
reliable, but would likely require significant design work. As a direct consequence of this absence, peers take all
files they are responsible for offline as they disconnect – there is no handling for exits from the Chord ring, both
controlled and uncontrolled. Additionally, files have no protection from the node which is responsible for storing
them: in the current system, an attacker could modify any file which they are tasked with storing. It is possible
that files could be signed by their authors as a countermeasure, at the cost of making file ownership public. To
defend against both of these possibilities, Chord periodically checks the file system to see whether its key is still
accessible and has not been modified.

5.4 Shallot

In contrast with other sub-systems of Chord which use encryption, Shallot makes use of AES-CBC-128 rather
then AES-GCM. Although GCM is typically considered to be a safer mode as it generates additional tags for
data verification, it becomes very expensive to have to bundle many tags as part of each encrypted datagram. By
using CBC instead, only the value of the random initialisation vector shared among all encryption layers must be
transmitted alongside the message.

There are numerous limitations to my onion routing implementation. Link failure is only detected once a
message delivery has failed, and in effect the receiving side of a session is unable to detect this link failure.
Packets are not constant size and send rate is not constant – following from this, the module’s onion traffic is
extremely vulnerable to traffic analysis. Realistic onion routing systems do provide this functionality, and it is
proven to be very effective at thwarting traffic analysis where passive monitoring is concerned – this would be
extremely worthwhile to implement in future.

Another limitation of Shallot at present is that in-order delivery of messages is not guaranteed, although
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by the current link failure constraint, delivery itself is reliable, acting like a hybrid between UDP and TCP. I
don’t feel that this needs to be handled at Shallot’s level – applications which desire such semantics are free to
implement it themselves.

The current onion routing algorithm over-privileges the forward direction when generating new circuits – an
attacker forwarding to the same node multiple times may cause a link to fail by choosing the same output circuit
number twice. This allows for a potential Denial of Service attack – further implications are explored in Chapter
6. It may be worthwhile to adapt the process to get confirmation from the next hop before using a circuit ID, or
alternately derive the circuit ID through some handshake.

5.5 Testing Methodology

Integration and unit testing of Conductor and Chord was performed through a MochaJS test suite, automated by
TravisCI in response to any commits to the GitHub repositories of each module. Although testing of WebRTC
related features could not be performed, connection and channel management logic for Conductor was tested in
its place. Unit testing of Chord was enabled without the use of WebRTC for the most part by testing all operations
on a 1-node ring, which allowed testing of the file system. Automated testing of the implemented Identity library
for n-bit arithmetic was also performed in a very thorough way, having no reliance upon network functionality
and being well-suited to testing. Shallot has no unit or automated tests at present.

Testing of the complete system was performed in a mostly ad-hoc fashion. Due to my lack of access to
suitable infrastructure to conduct large scale testing for validity and performance, all of my testing occurred
between two machines: my home computer (Windows 10 x64, Google Chrome/Firefox, Intel i7-920 @ 2.80GHz
[4 Core], 6GB RAM) and a remote Digital Ocean VM (Ubuntu 14.04 x64, Node.js, Intel(R) Xeon(R) CPU E5-
2630L v2 @ 2.40GHz [1 Core], 512MB RAM) hosting all clients and the server respectively. Locally, I hosted
a maximum of 15 clients in separate browser windows. This is because when multiple tabs within the same
window were used, Google Chrome was observed throttling unseen tabs, causing message delivery delays and
timeouts on periodic actions to fire. File system accesses and onion routing both appeared to run acceptably in
this set-up, with very little (humanly perceptible) delay noted. Unfortunately, no hard performance numbers are
available.

I had intended to make use of all machines I have access rights for within the School of Computing Science
to generate a large-scale testbed for the project. As it turned out, the WebRTC adapter for Node.js could not
compile on the school machines as it required a higher version of glibc than was available. I conveyed this to my
supervisor, who confirmed that it would not be possible to upgrade the version in use within the School due to
previous issues introduced by the last attempted large-scale system upgrade.

5.6 Summary

Although JavaScript’s language deficiencies presented trouble during implementation, they could be bypassed
without too much work. Implementing these features was informative and useful. Importantly, many of the lim-
itations discussed above affect not only scalability, reliability or performance, but also lead into practical attacks
on the system – these vulnerabilities are elaborated upon in Chapter 6. However, many of these limitations
merely affect cross compatibility between browsers – and in turn, the measure of how deployable a WebRTC
solution is in practice. Although it is hoped that browsers will fully implement the spec in due time, this is not
an ideal situation.

Ad-hoc testing was sufficient for showing basic operation and for development of the system – but ideally,
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more rigorous quantitative testing is required. The main obstacle to this goal is suitable infrastructure; real world
testing needs to be done at scale above all else.
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Chapter 6

Security Considerations

This chapter provides a more critical examination of the security guarantees and weaknesses of my network
design, discussing how several aspects of the design add to the system’s security. Crucially, several practical
attacks are presented against the implemented design, displaying the known weaknesses of the system alongside
potential modifications to remedy them.

It must be stated beforehand that this analysis is by no means exhaustive – I am not a security professional,
and there are almost certainly attacks or other uncertainties I have missed or which go beyond my understanding
of attack construction.

6.1 General Considerations

The use of self-certifying identifiers within the system greatly enhances the security guarantees that can be
made. Assuming proper verification is performed, identity spoofing is made impossible due to the massive 1024-
bit key size provided by RSA. The choice of an unbroken cryptographic hashing algorithm such as SHA3-224
ensures that finding a public key which collides with a known node’s ID is computationally intractable on modern
hardware with presently known and disclosed techniques.

I’m unable to make any observations or guarantees about the security implications of the design of the
messaging client. Since it has yet to be implemented, it’s very difficult to make any claims when the design has
not yet been tempered by real-world considerations.

6.2 Design Weaknesses and Known Attacks

Although the use of self-certifying identifiers is useful in practice – we gain source verifiability, and generation
of additional RSA public-private key pairs is by no means free for attackers to perform – attackers remain able
to mount a Sybil attack on the system. A Sybil attack is defined as an attack where safeguards and reputation
systems are bypassed through the generation of a large volume of identities – attackers may pre-generate and
cache vast numbers of valid identities until they own a set which is evenly distributed around the identity space
(full-space) or until they obtain an identity which belongs to a desired region of key-space (partial-space). This
can allow an attacker to take responsibility of a file if they so wish, or to arbitrarily increase the likelihood that
they are chosen as part of an onion route; Sybil attacks are assumed to be the precursor for many of the attacks
on the design which follow. Weakness to Sybil attacks is not exclusive to my design or implementation, attacks
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have been seen in the wild against Tor [2] and some level of weakness is theorised in I2P [27]. Approaches such
as the Invisible IRC Project (IIP, not to be confused with I2P) use proof of work schemes to limit the amount of
identities that can be generated as a defence against Sybil attacks [26]. Most importantly, Sybil attacks become
harder to coordinate and execute as the network size grows [27] – making a small-scale deployment such as
Shallot particularly vulnerable.

6.2.1 File System

When storing a file, a request is susceptible to having the included public key substituted for that of another node.
An attacker may use this and substitute their own public key into the packet, either to take exclusive ownership of
a file or to co-opt a file’s ownership by secretly storing the returned ownership key before forwarding it to the true
owner. The design of this action requires adaptation to either send this information securely through signatures
with additional layers of encryption on call parameters or to lookup the owner’s key through the central file
system and the key-management module suggested in Section 8.2.

In addition to this, file storage and update requests in the network use no form of data signature to protect the
integrity of new versions of files. As a result, any node along the path which must handle or direct such a request
may freely substitute the file contents with whatever it sees fit. For updates in particular, this can be remedied by
including and hiding the hash for the new data’s contents rather than the old inside of the proof for the intended
recipient. For new files, the request must include some form of signature to ensure that ownership cannot be
co-opted, but how to prevent its modification across the network in turn is unknown at this time.

Ownership and storage transference through key relocation are NOT absolute – in the current design, the
prior storage location or owner may still retain the ownership access key. It may be worthwhile to examine the
approach of [3] to gain some insight on how to efficiently perform key revocation to defend against ownership
transfer between two nodes. Additionally, it may be possible for file ownership to be managed with asymmetric
keys – where the file owner is in possession of a private key with which they can use sign updates, verifiable
by the store which holds the public key. In practice, such a scheme might be too expensive to enact due to the
variable length delays I’ve experienced while generating identities for nodes.

Files in the present scheme are modifiable without repercussion by the node responsible for their storage.
Although they do own a copy of the ownership key, naturally they have no reason to use or check against it
should they wish to modify a file’s contents. This could be fixed by having files bundled with signatures created
by their owner, allowing any node downloading a file to detect whether or not tampering has been committed by
the responsible node. Similarly, an attacker can take responsibility of an existing file on the network and refuse
service of it via a partial-space Sybil attack. Assuming they can no longer inappropriately modify the file, this
allows an attacker to feign ignorance about a file’s existence, denying access to it as part of a Denial of Service
attack. This could be fixed with file replication across the responsible node’s successors, but remains vulnerable
to sufficiently advanced Sybil attacks which occupy all the available successors for a file. To defend against this,
a suitably large degree of replication is needed – as a result, it becomes harder for an attacker to generate enough
keys in the right regions of identity-space to an arbitrary level of precision to deny all service.

6.2.2 Shallot

As discussed in Section 5.4, the current route building algorithm over-privileges the forward direction when
specifying circuit IDs. By choosing the same circuit ID twice, an attacker forwarding to the same node multiple
times may cause a link to fail when the next hop is unable to decode the message. Although an attacker cannot
selectively use this attack with any fine precision, this may be useful as a blanket Denial of Service strategy to
knock out all onion-routed communication. As a fix to this, it may be worthwhile to get confirmation from the
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next hop before using a circuit, or by generating circuit IDs through negotiation or consensus. This attack is easily
detectable by the source node, who will immediately realise that the link is closed once message transmission
fails.

Attackers can exploit the remote procedure call framework’s acknowledgement semantics to create a silent
Denial of Service attack on any onion routes which pass over them. To do this, an attacker is expected to begin
with a full-space Sybil attack to increase the likelihood that they are chosen as at least one of the relays along a
route. From here, an attacker may respond to any “relay” call made upon it with any answer message, fooling all
higher levels of delivery into believing that the message transmission was successful. As a result, the source node
never discovers that traffic is being lost and never closes the link in response. Again, an attacker is unable to use
this technique selectively in most cases, but it presents a more insidious potential attack than the one discussed
above. it may be possible to alleviate this with the aid of some challenge and acknowledgement that only the
final node is able to respond to correctly – in the event that an incorrect acknowledgement is received, the source
endpoint becomes aware that such an attack is in progress. Additionally, periodic regeneration and rotation of
onion routes might prove to be a viable strategy, assuming there are enough users to minimise the chance of
selecting a “bad” node.

Within the system presently, nodes do not send packets at a constant rate through techniques such as noise
generation or packet buffering. As a result, there is very little extraneous traffic which can be used to mask the
routes chosen for onion relaying, potentially presenting a vector for an attacker to conduct traffic analysis. If
an attacker is able to monitor and determine traffic flows (i.e. with a sufficiently large set of controlled clients
through a full-space Sybil attack) then they may be able to determine the source and destination endpoints, to
prove that communication is taking place.

The above Denial of Service attacks can be targeted more selectively, but with far greater difficulty by
analysing packet sizes. Presently, packets grow in size with successive layers of encryption due to padding
both pre- and post-encryption. As packets are not divided and sent as uniform chunks within the system, packet
size can be used as a probabilistic indicator of distance from either endpoint – large packets are more likely to
be observed closer to a source, and smaller packets are more likely to be seen at relays closer to the destination.
Using this observation, an attacker who is made part of an onion route could, over time, estimate their certainty
that the last or next hop along a route is the source or destination endpoint and conduct any of the above attacks.
The most obvious counter-measure would be to adopt a single-packet-size-model as employed within Tor.

Crucially, the model does not allow attackers to ever read the contents of any onion packet. As end-points of
any communication are the destinations themselves, unlike with Tor exit-nodes, the contents of any packet are
never exposed to external scrutiny as they leave the network.

6.3 Best Practices

When working with the remote procedure call framework, developers should expose only a subset of a module’s
functionality remotely if they wish to reduce the attack surface exposed to adversaries. Validation of input and
prevention of unintended actions is time-consuming and very difficult to ensure for each and every remotely
available action – by reducing a module’s public API to fewer operations, developers are able to dedicate more
of their time to the management of fewer safety checks, while reducing the amount of potential attack vectors
exposed to adversaries. Ideally, any application developer should either make remotely available procedures
idempotent and functional in nature, or they should make a strong effort to minimise any unverified mutation
of state where possible. Verification of answer content may also be necessitated to prevent tampering of tunnel-
based transports built with the framework.
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6.4 Summary

Broadly, the current system design provides very strong protection against impersonation and identity spoofing
through the usage of self-certifying identifiers. However, all the presented attacks on the file system invalidate
the guarantees we need for the system design to be sound – applying the proposed fixes and design modifications
in future is crucial for the system to be secure.

By directly drawing influence from established protocols, the only attacks on the implementation of onion
routing itself are Denial of Service attacks. Although they make usage more difficult and preventable for users,
the underlying data integrity is never compromised. Although potential attacks are theorised to allow partial
unmasking, it remains unclear whether or not these Sybil-based attacks are feasible in practice.

With regards to the onion-routing implementation provided by Shallot, it is unclear whether or not any of its
differences from Tor, I2P or other such designs introduce additional unseen vulnerabilities or compromise the
guarantee of perfect forward secrecy.
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Chapter 7

Evaluation

This chapter summarises my experiences throughout the project in constructing my original design, particularly
concerning the design of secure systems. I also talk briefly about my thoughts on working with the intended
design, and discuss the knowledge and experience I’ve gained throughout the project.

7.1 Project Design

Chord, against my best wishes, represents the most significant time investment in the project. While it made
higher levels easier to develop and program securely, it led to constant difficulty during its development; not
only because of the deviation from the Chord specification but due to the specifics of WebRTC and the browser
environment. Although I’d prefer to have composed my design without it, Chord proved to be an extremely
powerful architectural basis, while also presenting unique challenges that have taught me a lot about the design
of distributed systems. Its importance to the design cannot be stated enough, Chord provided many opportunities
for adaptation of simple functionality such as distributed file storage into versions adapted with security in mind.

In hindsight, trying to target both Node.js (server) and the web-browser (client) environments on a single
code base was an awful idea, but an admirable one nevertheless. Although I saved myself the trouble of writing
and maintaining two different-language projects with identical feature sets, the project ended up being extremely
reliant on external open source projects. Broken in subtle and often insidious ways more often than not, I had
introduced sources of error into my program that were effectively out of my control due to my inexperience with
C++. Further valuable time had to be dedicated to modernising the API of one of these libraries to match the
W3C specification due to the unstable nature of WebRTC.

7.2 Choice of Implementation Language

Because of the project’s primary focus and goals, JavaScript was the only suitable language for implementation
(in the client, at the very least). Despite JS being one of my favourite languages for game development (including
online game development) and prototype development, I’ve come to the conclusion that the language is an
abysmal fit for the design of large-scale distributed systems. The distinct lack of language support for remote
procedure calls as well as large number (n-bit) arithmetic meant that I had to develop these features from scratch
within the language. Although I gained a lot of valuable experience from this “do-it-yourself” approach, I have
to acknowledge that I’d have had more time to improve on the rest of the system, to think about the design and
to address glaring flaws throughout the project.
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Although I’d liken the use of JavaScript in the development of complex network topologies to building
the Vatican from matchsticks and glue, recent evolutions to the language made its usage far simpler and more
suited to the task. ECMAScript 6 (ES6) is the next version of the JavaScript language, and has seen increasing
implementation since its proposal. One of the key features introduced is that of “Promises”, which are a more
sensible and composable abstraction around asynchronous actions than the traditional JS concept of callbacks.
Promises lie at the heart of the design of almost all elements of my design’s implementation for this reason –
the amount of mental work they alleviate is immeasurable. Additionally, they allow for far richer remote failure
modes. The addition of classes and inheritance to the language by ES6 make structured programming within the
language far simpler while also allowing advanced concepts like dynamic trait mixins – although the world at
large is slowly moving away from the Object-Oriented paradigm, in certain classes of application these language
features still aid greatly.

JavaScript is traditionally immune to race conditions by following a single-threaded event-driven execution
model. When considering a multi-user distributed system where each runs periodic events without consideration
for synchronisation between nodes, however, these guarantees fall away. Debugging and systems design in such
an environment with cross-platform considerations becomes very hard, very quickly. A lot of my debugging work
for the message routing rules involved deduction and pen-and-paper work more than interaction with a debugger
due to Node.js’s abysmal debugging tools. When working with modern language features and asynchronous
calls, the browser’s JavaScript debugger doesn’t often fare much better – though it is far better than having
nothing at all.

7.3 Experience Gained

Ultimately, working on this project has given me a lot of valuable insight into the design and development of
security-focused protocols and applications. In particular, analysing my own designs for flaws and attacks from
an adversarial perspective has shown me the difficulty of creating a trustworthy, reliable design for any part of
a large-scale system. Implementing features like RPC from scratch, while time consuming, has helped me to
develop an understanding of how such systems work in practice.

Development of effective routing rules took some amount of thought, as did the formalisation of Chord with
very little help from the specification. The Chord paper is simply not written with a WebRTC-like model in
mind, meaning that the design of a suitable state machine had to be concocted with great care, consideration and
reliance upon my intuition. As a result, I’m far more likely to make use of state machines and other formalisation
methods in my future work – assuming the system is correctly modelled, the paradigm is extraordinarily powerful
for building reliable systems.

7.4 Summary

Overall, working on this project has given me a lot of insight that I will carry forward with me into my future
work. Although I feel that certain aspects of the design were not the best choices in hindsight, collectively they
do provide a coherent and powerful system. Although I have my grievances with using JavaScript, the language
mandated by WebRTC, I still believe that it is a powerful technology for building smaller-scale systems.
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Chapter 8

Discussion and Future Work

This chapter concludes the report, connecting the original project goals with my findings, experience and results.
To add to this, enhancements and future developments to the design and final implemented product are discussed
at length.

8.1 Conclusion

Throughout this report, I have ultimately shown that onion-routing over WebRTC is a feasible approach, and that
the browser is available as a suitable environment for deployment. However, my experience throughout the year
has shown me that the tooling is perhaps too immature for this to be immediately realisable for widespread or
commercial usage – parity of WebRTC feature support between browsers is lacking, the lack of proper WebRTC
support for serverside JavaScript environments and JavaScript’s current unsuitability for large-scale distributed
systems hampered this project on many occasions. Additionally, my design is rather immature and contains
many glaring security holes, which I’ve explained where possible.

While the final results of the project are defined more by their limitations than anything else, the work I’ve
presented here demonstrates a proof-of-concept for bringing the onion routing paradigm to the browser while
showing the power of WebRTC. I hope that this encourages others to examine different architectures and designs.
Although I believe that implementing many of my proposed fixes to the design shown here will eventually lead
to a secure basis for a system, it is more than likely that a design based on a completely different architecture
would encounter far simpler or more elegant solutions to the problems I’ve encountered.

I believe that modifying Chord to make use of a message- and module-based approach is a powerful adapta-
tion of the protocol. Specifically, it accounts for the design of more traditional classes of application that wish to
leverage its peer-to-peer topology in novel ways. Although the additional enhancements presented (such as the
authenticated file system) have many present vulnerabilities, additional work to repair the design could add to
the protocol’s usefulness.

8.2 Future Work

First and foremost, the proposed messaging client is to be implemented. This will allow me to assess and
discuss the viability of the core application design as well as fulfilling one of the original project goals of making
secure communication over onion-routing deployable. A collection of libraries alone is by no means usable for
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most clients. Additionally, this will demonstrate whether or not mixing onion-routed communication with more
traditional paradigms within a single applications holds merit.

Conductor can be enhanced beyond its current capabilities. Better modelling for WebRTC’s more nuanced
disconnection model may prove useful in practice, by making networks built on top of it more reliable. More
efficient resource management could be obtained by combining reference counting on each end alongside a ded-
icated backing channel. Conductor would periodically exchange information between each end of a connection
to determine whether it remained in use at either side of the link. Attaching an operation to the browser’s page
exit handler would also allow for instant disconnection detection in the event that the browser or tab is closed by
the user.

My adaptations to the Chord protocol will need considerable work before they are truly suitable for secure
systems design (Chapter 6), but there are further enhancements that can be introduced to make the system more
reliable, fast and scalable. It may be worthwhile to move all key lookup and handling to a central module of
Chord – Shallot already makes use of such functionality internally to aid lookup of known keys, for instance.
This could be combined with the additional traffic classification – separating messages which require security and
verifiability through mandatory signatures from the source node, from those that do not such as in self-certifying
IDs. The system use these different classes of traffic intelligently; some remote calls such as .notify()
within Chord would strongly benefit from source verifiability, but to enforce these guarantees blindly could have
an impact on performance due to the necessary key lookups. With the built in support for multiple packet formats
within the system, moving to a binary message format within Chord rather than the current JSON would be of
great interest. This would reduce packet sizes, making message transmission faster and less bandwidth-intensive
throughout the system due to JSON’s syntax overhead.

Additional work would need to be undertaken to improve fault tolerance across the network in line with
the recommendations of the initial specification [22]. A key concept to implement would be file replication –
distribution of multiple copies of a file throughout the network in the event that a responsible node disconnects
and a file is lost. However, it is unclear how this would interact with file ownership and authentication of updates
– further design work would be mandated to make this a reality. Additionally, nodes could maintain backup
lists of successors to aid rediscovery in the face of high churn – my state machine does model for this, but the
functionality could not be included due to time constraints. Further enhancements are possible from this, such
as periodically contacting known server nodes across Chord to detect network partitioning or pinging connected
nodes to check for liveness.

The current iteration of Chord assumes that every node runs an identical set of modules, with identical
service support on every client and server node. Adaptation of my system to include heterogeneity of services
and capabilities throughout the system would have far reaching consequences, enabling a single multi-purpose
network for many different applications, potentially bolstering the user-base and providing more protection from
Sybil attacks. This would also allow the server to have a more light-weight design than all other nodes within
the system, enabling its development in a more robust language such as C++ – allowing my design to escape its
current reliance on broken open-source adapters for WebRTC in Node.js

To combat the security vulnerabilities discussed in Chapter 6, multiple approaches are considered in addition
to those already suggested earlier. Introducing the measure of a node’s “trustworthiness” to the system might
prove to be an effective way of handling rogue nodes throughout the ring – nodes which repeatedly commit
protocol violations or are involved in a disproportionately high amount of errors may be excluded by their peers
through some consensus-based protocol. Ownership within the file system could be migrated to a public-private
key system to handle file relocation in a safer manner, although RSA would likely prove too expensive in practice.
Accesses to public keys from the file system should be modified to work though the above proposed central key
storage module. Signatures and verification would need to be more prevalent throughout the file system to prevent
illegal substitutions and modifications of sensitive data.

The onion-routing scheme presented in Shallot needs further modification to be securely and reliably used.

47



The current weaknesses to traffic analysis are unacceptable with respect to one of the main goals of onion routing
itself – the next steps for the development of the module include a move to a constant rate of data transmission,
compensating for quiet periods and excess load through random noise transmission and packet buffering respec-
tively. A move to a more traditional approach such as Tor’s may be a valuable avenue in future – particularly as it
is unclear if any of the minor modifications made to Shallot’s protocols affect the guarantees of perfect forward
secrecy.

Examination into existing methods of mitigating and impeding Sybil attacks on the system would make
the network more resilient against many of the offensive techniques that they enable. Although proof-of-work
schemes such as HashCash within the Invisible IRC Project are suited to this task, their computational overhead
may prove prohibitive for deployment within the browser. Additional research in this field is warranted.

Finally, rigorous performance testing of the P2P overlay and onion-routing system will be required to show
whether the design proposed throughout this report is usable in practice. In particular, it would be worthwhile
to see how latency and maximum bandwidth scales with network size and onion route length. Crucially, these
numbers must be compared against those observed in Tor and I2P to provide a more direct comparison of the
effects that deployment environment and protocol have on these metrics.
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Appendix A

Installing, Compiling and Running the
Program

Provided within the “L4proj-15-16-SIMPSON,kyle.zip” file, are four subfolders – “Conductor”, “Chord”, “Shal-
lot” and “shallot-test”. The first of these 3 correspond to the libraries of the network stack I have developed and
are designed to be included as part of some higher level application – they are not directly usable. The folder
“shallot-test” DOES allow interaction and use of the network, and contains server and client programs for your
use, if so desired. Instructions on their use are included in the README.md files in each directory.

Compiling the client or running the server will require Node.js (https://nodejs.org/en/) – this acts
as the package management and compilation environment for the client, and as the server runtime. Additionally,
the server must be run from a modern version of Linux – the school computers are insufficient. A precompiled
version of the client program is provided through “compiled.js” and “index.html”.

A.1 Testing the Libraries

Both Conductor and Chord have a suite of unit tests to prove operation. To run either test suite, execute the
following from inside the module’s root directory.

> npm install
...
> npm install -g mocha
...
> mocha

Test runner output will appear in the console.

A.2 Compiling and Running the Client

To compile the final JS client, from within “shallot-test” open a new terminal window and type:
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> npm install
...
> npm install -g webpack
...
> webpack uncompiled.js compiled.js

To run the client, access “index.html” either directly or by placing it upon a web server in the latest version
of Google Chrome – ensure that “compiled.js” is in the same folder as the html page!

The page will then ask for a server address: “ws://mcfelix.me:7171” resolves to my server, which I will
attempt to run where possible. If you’re running the server locally, type “ws://localhost:7171”. If you are
unable to compile the server for your own purposes and my server is down, contact me immediately.

Press F12 to bring up the developer tools – select the JavaScript console. The Shallot object exists within the
window under the name s. To see the current node’s client ID, type s.chord.id.idString. To open an
onion connection, perform the following steps from within the JS console:

var otherID = //... the target node’s ID.

/* ... */
// After you see "[CHORD]: JOINED!!!!" in console

// Space for the new connection.
var myOnionConn;

// Create a new connection
// Note: whitespace is unimportant here.
// This will work as one line if necessary.
s.connectTo(otherID)

.then(
result => {

myOnionConn = result;
alert("Connected!");

},
error => console.log(error));

// NOTE: The above is how to utilise javascript promises,
// where param => {/*...*/} is a lambda

/* ... */

// Once the connection is created (the above request is async)
myOnionConn.send("Hello world!");

The example is designed to hook up handlers automatically, such that another browser will display notifica-
tion that it has received data in its console. Note that the server has no such code – while you can open an onion
link to the server, it has no handling activated.
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A.3 Installing and Running the Server

In addition to Node.js, the server requires the installation of a WebRTC adapter – “node-webrtc”. Compilation
of this will take a considerable amount of time as it as a C++ extension for Node.js. The full list of its dependen-
cies is available at https://github.com/js-platform/node-webrtc in the readme file. If you are
unable to compile, please do not hesitate to contact me.

To install the dependencies and adapter and to run the program, type the following sequence of commands.

> npm install
...
> npm install https://github.com/js-platform/node-webrtc.git#develop
...
> node server.js

The server can be observed working when vast amounts of output appear in the console. If you are unable to
compile on your environment, again, do not hesitate to contact me!
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Appendix B

Chord Packet Format

Messages within the modified Chord scheme have a 2-byte version field, followed by any arbitrary format. So
long as it encodes the necessary information required by the system and the receiving node has a valid handler
for the delivered packet format, then a packet is deemed valid.

There are two classes of packet in the system design presently – Data and Proxy packets. All packets must
(at present) contain type, source, destination, remaining hops and data fields, with an optional proxy field. Addi-
tionally, Data packets must have valid module and handler fields, to inform the recipient about how the message
must be parsed. Proxy packets, when delivered, are unpacked to obtain a data packet – the recipient then places
its own ID into the packet’s proxy field before retransmitting.

At present, there is only one packet version: “00”, which corresponds to a JavaScript Object Notation (JSON)
format for simplicity. Identities are stored in Base64 format, and field names are shortened to one character to
save space where possible – these packets are also expanded and formatted for readability. Examples follow,
assuming a 224-bit identity space.

KEY
• Type - “t”
• Source - “s”
• Destination - “d”
• Remaining Hops - “H”
• Data - “D”
• Module - “m”
• Handler - “h”
• Proxy - “p”

Data Packet
00{

"t": 0,
"s": "F4qaM4j0Gb3zKq23SDEtJqDY0mN1K/0ahfOgyg==",
"d": "Z7ydoyjca7RNF3QptGcHigBYhZVqGSpHROVjhQ==",
"H": 245,
"D": "arbitrary-data",
"m": "Handling_Module_Name",
"h": "Delegated_Handler",
"p": "RNTR/Fmzj38AUNRSP5s7K5hblgc4loqYsUi8nA=="

}
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Proxy Packet
00{

"t": 1,
"s": "Z7ydoyjca7RNF3QptGcHigBYhZVqGSpHROVjhQ==",
"d": "RNTR/Fmzj38AUNRSP5s7K5hblgc4loqYsUi8nA==",
"H": 123,
"D": "00{\"t\":0, \"s\":\"...\", ... }"

}
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