
Per-Host DDoS Mitigation by Direct-Control Reinforcement Learning

Kyle A. Simpson , Simon Rogers , Dimitrios P. Pezaros , Senior Member, IEEE,
School of Computing Science, University of Glasgow, Glasgow, G12 8RZ, UK

k.simpson.1@research.gla.ac.uk, Simon.Rogers@glasgow.ac.uk, Dimitrios.Pezaros@glasgow.ac.uk

Abstract—DDoS attacks plague the availability of online ser-
vices today, yet like many cybersecurity problems are evolving
and non-stationary. Normal and attack patterns shift as new
protocols and applications are introduced, further compounded
by burstiness and seasonal variation. Accordingly, it is difficult
to apply machine learning-based techniques and defences in
practice.

Reinforcement learning (RL) may overcome this detection prob-
lem for DDoS attacks by managing and monitoring consequences;
an agent’s role is to learn to optimise performance criteria (which
are always available) in an online manner. We advance the state-
of-the-art in RL-based DDoS mitigation by introducing two agent
classes designed to act on a per-flow basis, in a protocol-agnostic
manner for any network topology. This is supported by an in-
depth investigation of feature suitability and empirical evaluation.

Our results show the existence of flow features with high
predictive power for different traffic classes, when used as a basis
for feedback-loop-like control. We show that the new RL agent
models can offer a significant increase in goodput of legitimate
TCP traffic for many choices of host density.

Index Terms—Security services, distributed denial-of-service,
software-defined networking, machine learning, reinforcement
learning.

I . I N T R O D U C T I O N

Network anomaly detection and intrusion detection/prevention
are continually evolving problems, compounded by the partial,
non-independent and identically distributed (IID) view of data
at each point in the network. Attacks and anomalous behaviours
evolve, becoming more sophisticated or employing new vectors
to harm a network or system’s confidentiality, integrity, and
availability without being detected [1]. These attacks and
anomalies have measurable consequences and symptoms which
allow a skilled analyst to infer new signatures for detection
by misuse-based classifiers, but unseen attacks may only be
defended against after-the-fact. This issue is inherent to misuse-
or signature-based intrusion detectors, and it has been long-
hoped that anomaly-based detectors would surpass this by
making effective use of statistical measures [1].

While machine learning (ML) approaches seem like a
sensible fit for this problem, in 2010 Sommer and Paxson
identified the ‘failure to launch’ of ML-based anomaly detection
systems—a distinct lack of real-world system deployments [2].
To quite a large extent, this remains the case today. They posit
that their use is made difficult due to significant operational
differences from standard ML tasks, including: the high cost
of errors and extraordinarily low tolerance for false positives
inherent to network intrusion detection [3]; a general lack of
recent, openly available (and high-quality) training data; and
diversity of network traffic across varying timescales combined

with significant burstiness [4]. Above the aggregate level, the
constant deployment of new services and protocols means that
traffic is non-stationary and displays an evolving notion of
normality. Learning is made harder still by the challenges
encountered with unlabelled (often partial) data. All of these
factors greatly inflate the difficulty of the detection problem.

For certain classes of problem e.g., volumetric distributed
denial of service (DDoS) attacks, reinforcement learning (RL)
offers another perspective. RL agents operate by following
a policy to interact with or control a system, while at the
same time using observed performance metrics and deliberate
exploration to dynamically improve this policy. In this way
the role of a RL agent differs from that of a standard classifier,
adaptively reacting to threats by assuming the role of a feedback
loop for network optimisation, typically to safeguard service
guarantees. In a sense, this allows us to “overcome” some of the
difficulties of the detection problem by monitoring performance
characteristics and consequences in real-time; by looking for
(and controlling) the effect rather than the cause. Long-term,
we expect that the value of RL-based defence systems will be
to augment what existing misuse-based solutions can provide,
by automatically alerting, recording and controlling what are
believed to be illegal system states. The goal of this work is
much less general; we aim to prevent volume-based DDoS
attacks with the aid of RL-based techniques (an important goal
in its own right), while bringing to light the flexibility and
applicability of these techniques in the security domain.

To date, there have been few applications of this class of
algorithms towards intrusion detection and prevention which
make use of their full potential for online control, rather than
using them as the basis for a classifier. We aim to take steps
to redress this and establish their proper capabilities, beyond
simple “blind application”. What approaches do exist are aimed
towards the task of adaptive online DDoS mitigation, and rely
upon learning to control probabilistic packet drop.

We find that the existing work for this task [5] fails to account
for congestion-aware traffic (i.e., TCP) and environments with
high host density per egress point, achieving poor results due
to an overly coarse view of the network. To remedy this, we
make throttling decisions on a per-source basis and present
the engineering decisions this mandates: updating RL agents
from multiple traces per timestep, timed random sequential
action computation and a supporting software-defined network
(SDN) architecture. In tandem with the development and
evaluation of an effective state space and model, we provide the
design of a second model inspired by past work on algorithmic
DDoS prevention, as an example of the integration of domain-

https://orcid.org/0000-0001-8068-9909
https://orcid.org/0000-0003-3578-4477
https://orcid.org/0000-0003-0939-378X
mailto:k.simpson.1@research.gla.ac.uk
mailto:Simon.Rogers@glasgow.ac.uk
mailto:Dimitrios.Pezaros@glasgow.ac.uk

specific knowledge. Our introduction of per-source decisions
improves substantially upon the state-of-the-art when acting
upon most internet traffic (i.e., congestion-aware protocols), and
we show that our second model achieves excellent performance
for high host density in this case. Crucially, both models remain
protocol- and content-agnostic to offer future-proofing against
the rollout of future protocols like QUIC [6].

A. Contributions

This paper contributes two source-level granularity approaches
to RL-driven DDoS prevention (Instant and Guarded action
models), improving upon past aggregate-based models (sec-
tion III). These are designed to make effective decisions
irrespective of protocol, and act on individual flows at the edge
of any network topology. We offer an in-depth investigation
into suitable features for automatic DDoS mitigation, with
qualitative and quantitative justification (section IV). These
features have been suggested by past studies, and independently
tested in their own contexts. Our study is the first attempt to
quantify the individual efficacy of each in an RL setting.

We implement reactive simulations of HTTP and VoIP web-
server traffic, designed to test system characteristics that packet
trace playback fails to capture (section V). To our knowledge,
this is the first attempt to study or replicate Opus-based VoIP
traffic, which has become commonplace since the codec’s
release in 2012. These new traffic models inform an empirical
evaluation of our new models against the state-of-the-art in
RL-based DDoS mitigation using (section VII), alongside a
discussion of security concerns and real-world deployment
(section VIII). We additionally compare our work against
SPIFFY [7], reuniting two divergent strands of research and
grounding the study of RL-based DDoS defences.

I I . B A C K G R O U N D A N D T H R E AT M O D E L

A. Distributed Denial of Service

Distributed denial of service (DDoS) attacks are concentrated
efforts by many hosts to reduce the availability of a service,
typically to inflict financial harm or as an act of vandalism.
Attackers achieve this by either exploiting peculiarities of
operating system or application behaviour in semantic attacks
(e.g., SYN flooding attacks), or overwhelming their target
through sheer volume of requests or inbound packets (volume-
based attacks) [8]. Hosts often participate unwillingly, typically
having been recruited into a botnet by malware infection to
be orchestrated from elsewhere [9].

Although there are variations of each class of attack, flooding
attacks are the most relevant to our work. Amplification attacks
exploit services who eagerly send large replies in response to
small requests, where UDP-based services like DNS and NTP
are most exploitable [10], [11]. Malicious hosts send many
small requests, spoofed to appear as though they originated
from the victim, causing many large replies to be sent to the
intended target—significantly increasing a botnet’s throughput
while masking the identity of each participant. Transit-link/link-
flooding attacks have been the subject of recent attention,
wherein malicious traffic is forwarded across core links needed
to reach a target (but not to the target itself) [12], [13].

s =
(
0.7
0.3

)
x(s, ·) =

T1,9,
T2,5,
Tbias

Tiling 1

Tiling 2

s

1

1

0

(a) Tile Coding

-0.3 -0.5 -0.1 0.8
0.1 0.1 -0.2 0.3
0.3 0.4 0.2 -0.4

T1,9
T2,5
Tbias

0.1 0.0 -0.1 0.7Total

(b) Value Estimation and
Action Selection

Figure 1. An example of tile coding for 2-dimensional state and 4 actions,
using 2 tilings, 3 tiles per dimension, and a bias tile. All components of s are
clamped to [0, 1]. For simplicity, we denote x(s, ·) as a list of indices and
represent the values of all actions at each tile with a vector. (a) The state s
activates the bias tile and exactly one tile in each tiling. (b) The action values
of active tiles are summed to produce the current value estimate for each
action available in s—for this state, local knowledge ensures that action 4 is
chosen by the greedy policy despite typically being a poor choice elsewhere.

B. Reinforcement Learning

Reinforcement learning (RL) is a variant of machine learning
principally concerned with training an agent to choose an
optimal sequence of actions in pursuit of a given task [14]. We
assume the agent has a certain amount of knowledge whenever
a decision must be made: at any point in time t, it knows which
state it is in (St ∈ S), the set of actions which are available to
it (A(St) ⊆ A) and a numeric reward obtained from the last
action chosen (Rt ∈ R, At−1 ∈ A(St−1)). This model of system
interaction is a Markov Decision Process (MDP). RL methods
combine this information with a current policy π to determine
which action should be taken: such a choice need not be
optimal if an agent needs to further explore some region of the
state space. The policy is refined by updating value estimates
for state-action pairs or via policy gradient methods, meaning
that RL-based approaches learn adaptively and online if reward
functions are available in the environment they are deployed
in. In practice, this means that agents are able to automatically
adapt to evolving problems without operator intervention or a
new, custom-built training corpus.

From any point in a sequence of decisions, we may describe
the sum of rewards yet to come as the discounted return,
Gt = Rt+1 + γRt+2 + γ

2Rt+3 + . . ., choosing the discount factor
γ ∈ [0,1) to determine how crucial future rewards are vis-à-vis
the current state. Formally, an agent’s goal is to choose actions
which maximise the expected discounted return Eπ[Gt].

There is immense variation in how policies and/or values
may be learned, reliant upon the learning environment, problem
and required convergence guarantees. In particular, we focus
on methods which choose actions according to their value
estimates from the current state: let q(s,a) ∈ R be the estimate
of action a’s value if it were to be taken in state s. Exact
(tabular) representations require that we store a value estimate
for each action in every state—if state is real-valued or high-
dimensional, then computation and storage quickly become
infeasible. To cope with a continuous state and/or action
space, one valuable technique is to employ linear function
approximation backed by tile coding [14, pp. 217–221].

Tile coding is a form of feature representation which converts
a state-action pair into a sparse boolean feature vector x(s,a)
by subdividing a d-dimensional subset of the space into a
number of overlapping grids with an optional bias component.
Each tile corresponds to an entry of x(s,a) which is set to 1 if
the state-action pair lies within it. Figure 1a demonstrates the

0.8
0.3
-0.4

T1,9
T2,5
Tbias

Action 4

wt

0.7
0.2
-0.5

Action 4

wt+1

+αδt

Figure 2. The update step for fig. 1, given an observed TD error δt = −0.2
(indicating a lower observed reward than the expected long-term value of
0.7) and α = 0.5. Action 4’s value is thus reduced in the tiles associated
with state s, but remains the most likely choice; the negative δt may have
arisen from noise in the reward signal. For illustrative purposes, we choose
an unrealistically high α (typically, α ≤ 0.05 is a more reasonable choice).

process for a 2-dimensional state space, and that the numbers
of tilings and tiles per dimension control feature resolution
and generalisation. Moreover, to capture combinatorial effects
or create multi-scale representation we may combine codings
by concatenating individual feature vectors. We may then
approximate an action’s value with respect to a policy parameter
vector w, defining some q̂(s,a,w) ≈ q(s,a):

q̂(s,a,w) = w> x(s,a) (1)

As each component of w is the value estimate of the cor-
responding tile, learning an effective policy is equivalent to
learning w. Given a learning rate α ∈ R and initialising w0 = 0,
we may continually update wt using the 1-step semi-gradient
Sarsa algorithm [14, pp. 243–244]:

δt = Rt+1 + γ q̂(St+1, At+1,wt) − q̂(St, At,wt), (2a)
wt+1 = wt + αδt∇q̂(St, At,wt), (2b)

where δt is known as the temporal-difference (TD) error, and
the vector gradient ∇ is taken with respect to w.

Computing the approximate value of every available action
forms the basis of a policy. Actions with maximal value can
be chosen each time (the greedy policy), we might modify this
by taking random actions with probability ε to encourage early
exploration (the ε-greedy policy), or we might use some other
mechanism. Figure 1b extends the prior working example to
show how the value of each action is computed (and which
action would be chosen by a greedy policy), combining a
global estimate (Tbias) with knowledge particular to each state.

This combination of algorithm and coding strategy is well-
optimised, if actions are discrete; this allows a particularly
efficient (vectorised) implementation of the policy and update
rules by storing a vector of action values for each tile. Action
values for any state are then obtained by summing the weight
vectors from all activated tiles—taking |A|(ntilings − 1) floating
point additions per decision. Observing that ∇q̂(s,a,w) =
x(s,a), further optimisations arise by considering that a tile-
coded feature vector is a binary vector of constant Hamming
weight (and so is amenable to representation as an array of
indices, slist). This means that we need only perform ntilings+2
additions and 2 multiplications per model update:

wt+1[i][index(At)] = wt [i][index(At)] + αδt,∀i ∈ slist . (3)

Figure 2 shows how this applies to our prior example. If desired
we may define a state space with an arbitrary number of tiles per
dimension (higher-resolution, lower generalisation), yet having
constant-size state vectors and constant action computation cost
(O(ntilings)). Beyond this, we need not store action values for
tiles which have not yet been visited, conserving memory. A

caveat of tile coding remains, in that the value of α must be
reduced according to the number of tilings to prevent divergence
at the expense of slower learning (α← α/ntilings).

C. Motivation

Moving beyond the overt benefits of choosing RL-based
defences for coping with non-stationary problems, we believe
that there are concrete reasons for their use here. We have
seen that for other domains in particular, misclassification is a
serious problem, which can introduce collateral damage in the
context of DDoS prevention. In theory, the feedback-loop-like
model allows us to monitor flows after an action is taken to
allow forgiveness of mistakenly punished flows. This does rely
upon the ability to take a flow-by-flow view of the state space,
but if we can combine knowledge of current state with the last
applied action, then perhaps a flow which falls off identically
to a legitimate flow can be rescued.

Other studies suggest that there are particularly useful
features which make the task of online DDoS flow identification
feasible. Aggregate network load observed at various locations
suggests the overall health of a network [5], and the ratio of
correspondence between pair flows can suggest asymmetry and
in many cases illegitimacy [10]. Generic volume-based statistics
(counts, counts per duration, average packet sizes) have seen
effectiveness in such as k-nearest neighbours classifiers trained
to detect DDoS attacks in progress [15]. Most importantly,
there is evidence showing behavioural changes in response to
bandwidth expansion [7], suggesting similar artefacts might
arise after throttling, packet drop, or other interference.

D. Threat Model

An attacker’s goal is to minimise the fair-share bandwidth
allocation that a server can give to hosts, and they are expected
to act rationally in its pursuit. Threat actors are external and
act intentionally, aren’t expected to be advanced persistent
threats, and likely range from hacktivists to moderately funded
adversaries. We assume that attacks will be volumetric DDoS
attacks with the structure of an amplification attack, and that
traffic aggregates at the target (unlike in a transit-link attack).
The addresses of the set of unwitting reflector nodes are visible
to the target, though any bots taking part in an attack or the
machines those bots control are not revealed to the target
without communication with 3rd party organisations such as
upstream ISPs. The discovery of any reflector by some defence
system does have a cost to the attacker—there is a particularly
large (yet finite) supply of viable reflector nodes [10], but
the constraints that each has a large upstream bandwidth and
support for high-amplification-factor protocols narrow this pool.

We do not assume that an attacker has white-box access to an
agent’s policy, or that they will attempt to intelligently modify
flow/system state to indirectly control an agent [16]–[19].
While they may be able to perform some degree of reverse
engineering by observing the health of their own legitimate
canary flows, “stealing” the policy through observation [20],
investigating whether perturbations would persist in volatile
network traffic statistics falls outside of the scope of this
work. The same observation extends to the possibility of
poisoning attacks [21]. These are APT-level capabilities, whose

exploration presents a rich source for future work.

I I I . D D O S M I T I G AT I O N W I T H P E R - F L O W
R E I N F O R C E M E N T L E A R N I N G

Our main hypothesis is that the best method for advancing past
the current shortcomings of RL-based DDoS mitigation is to
design agents such that filtering decisions are computed per flow.
However, these alterations must account for computational con-
straints imposed by the deployment environment—the amount
of flows passing over an agent is unbounded. We describe
and justify our approach, our algorithmic improvements, and
present two action models, one of which draws on domain
knowledge introduced by SPIFFY [7].

A. System Design and Assumptions

A deployment environment is a network with a set of in-
gress/egress points from its domain of control, through which
traffic can flow, and a set of protected destination nodes. These
nodes may be services, servers, or in the case of Autonomous
Systems (ASes) and transit networks, egress points leading
to other networks. Agents are co-located with each egress
switch (i.e., k ingress points from other ASes require k agents),
all employ the same action model/design, and control the
proportion of upstream packets from each external host to
discard. Each destination node s has a maximum capacity, Us .

We assume that the deployment environment is a moderately
complex software-defined network, because the paradigm offers
features which can directly benefit RL agents acting within.
The OpenFlow protocol allows a controller (or other authorised
hosts) to install complex actions, forwarding rules and logic
into a switch at runtime. Furthermore, networks of this kind
more naturally enable the future use of network function
virtualisation, a technology which could allow relocation and
easy installation of learners (e.g., as examined by Jakaria et al.
[22]). Agents communicate with their co-hosted OpenFlow-
enabled switches—running a modified version of Open vSwitch
(OVS) [23]—to install probabilistic packet-drop rules.

Our system design applies to both software-defined and
traditional networks of arbitrary shape and size. Only the
ingress/egress nodes from a network need to be OpenFlow-
enabled, as it is advantageous to perform filtering as close to a
flow’s source as possible. In a traditional network, each agent
has exclusive control over its switch’s tables. In a fully software-
defined network, these agents require exclusive control over the
first table, forwarding legitimate packets to subsequent tables
managed by the network’s controller. The main difference is
that a traditional network needs this additional hardware, and
does not allow an operator to dynamically determine where
the “edge” of their network lies through vNF relocation.

B. Algorithm

To make decisions cheaply and at low latency, we use semi-
gradient Sarsa with tile coding as described in eq. (2) and
section II-B, rather than using neural networks or more
complicated function approximators. Exploration is introduced
via ε-greedy action selection, linearly annealing ε to 0 over
time. Each agent has its own internal parameter vector w,
and agents do not share their weight vector updates with one

another (but may share experience and traces with one another).
Although the choice of a classical RL method likely brings

lower theoretical performance, there are significant reasons
to favour such methods; these include lower latency decision-
making, lower energy usage, reduced model complexity (and
training time), the availability of necessary hardware, and
simpler decision boundaries. This aligns with our goal of quick
online learning, and faster adaptation to aggregate changes in
traffic without introducing dedicated tensor processing hardware
to networks. Simpler decision boundaries reduce the risk of
overfitting and unexpected behaviour, and we expect that the
simplicity of tile-based policy computation will also greatly
aid interpretability of anomalous action choices.

When choosing a learning algorithm, we compared against
Q-learning as well as methods based on eligibility traces such
as Watkins’s Q(λ) [14, pp. 312–314] and Sarsa(λ) [14, pp.
305]. Preliminary experiments found that Sarsa offered the
best performance and behaviour.

1) Action rate

We adapt the algorithm to prioritise rapid response to changes
in network state and to visit as many state-to-state transitions
as possible for effective learning. To this end, we allow agents
to make many decisions per timestep. We maintain the last
state-action pair associated with each source IP and destination,
and calculate any actions for the flows which still exist. Finally,
we update w using each available trace and the reward signal
from the relevant destination. As exploration still occurs for
each action, this approach reduces ε multiple notches every
timestep. In turn, we increase the annealing window for ε by
a factor of 2.67 so as to preserve exploration over time, by
accounting for the greater volume of decisions being made.

2) Per-tile updates

While the standard formulation of eq. (2) updates the value
of all tiles identically (by a scalar αδt), we found it more
effective to compute a different temporal difference value for
each tiling. While we make use of the sum of all tiles’ action
value estimates when making decisions, each tiling is updated
using only its own contribution, allowing us to set α to a higher
value without divergence. A crucial observation is that value
updates to each tile can move by different values in different
directions, converging on effective estimates sooner.

3) Decision narrowings

When learning control on the basis of a high-dimensional, tile-
coded state space, assignment of credit for each decision is
difficult (because all tiles have identical gradient). To combat
this, with probability ε an agent will mark a flow as being
governed by a subset of the state space for the next 5 decisions.
Each agent chooses actions on that source/destination pair
using one element of local state, the global state, and the bias
tile—we include the latter two to strike a balance between and
accuracy and correct credit assignment.

C. Feature Space

Our state space combines elements of global state (network
link load observations) with per-flow measurements. Each is

Agent 1
s0

s1

Agent 2

Agent 3

Us0

Us1

Figure 3. Global state selection for a flow between an external host and
server s0 which passes over Agent 1. All nodes in the path taken through the
defended network are filled in blue, and all link load measurements which are
chosen for action computation are indicated with a thick blue line.

tile-coded with 8 tilings and 6 tiles per dimension, using the
windows described in table I.

Global state is a vector of load values in R4 (Mbit/s)
depending upon the bandwidth measurements regularly received
from monitors in the environment. For any flow, an agent then
computes the path it would take through the network. The
incoming load recorded along the first hop, last hop, and tertiles
of the path may then be tile-coded together. In the event that
the path from an agent to its destination is shorter than 4 hops,
we duplicate (in order of preference) the load measurement of
a middle hop or the last hop. Figure 3 illustrates the process.

We build global state in this way to offer compatibility
with multipath, multi-destination networks, offering support
for diverse deployment environments from endpoint servers to
transit ASes. Computing the path from agent to destination is
not computationally expensive. Multipath routing is often fast
since typical equal-cost multipath (ECMP) routing algorithms
simply hash a packet’s flow key, and are deterministic to provide
consistent quality-of-service to hosts.

We describe and analyse each of the per-flow features
included in the state vector throughout section IV. Each feature
is tiled separately, with the exception of packet in/out count
(per-window and total), mean in/out packet size, and ∆ in/out
rate, which are combined with the last action taken. Rather
than having the network push the data to an agent, the agent
requests this information about active flows periodically to
isolate it from non-control-plane traffic and to eliminate the
risk of resource exhaustion by excessive requests.

D. Reward Function

Each destination node s generates a reward signal, Rs,t , at
every timestep t. Assume, for now, that each destination has
access to some classification function g(·) which estimates the
volume of legitimate traffic received, and expects to receive
traffics. Denoting the upstream, downstream and combined
loads load↑t (s), load↓t (s), loadlt (s) at this node:

cs,t = [max(load↑t (s), load↓t (s)) > Us], (4a)

Rs,t = (1 − cs,t)
g(load−t (s))

traffics
− cs,t, (4b)

replacing load−t (s) in eq. (4) with whichever directional load
is prioritised according to the traffic characteristics of the
deployment environment, where cs,t represents the “overloaded”
condition at destination s. We choose load↑t (·) for our UDP-
based models and load↓t (·) for HTTP, though we expect that
loadlt (·) would be the most suitable for general deployment or
heterogeneous traffic patterns. These choices reflect where the

bulk of transmitted bytes in each traffic model are observed
(and the lack of this knowledge in the general case).

While our use and definition of g(·) appears nebulous, there
are many ways to infer this quantity in practice. End-host
servers may use canary flows or other active measurements,
or employ existing quality-of-experience metrics in the case
of VoIP services such as lost packets, reorderings, and jitter.
ASes and transit networks may make use of reports received
from downstream networks, i.e. over the DDoS Open Threat
Signalling (DOTS) protocol [24]. Even if such heuristics or
perfect knowledge aren’t available in deployment, a sufficiently
well-trained agent needs only to greedily follow the policy it
has learned from training, allowing pre-training by a simulated
environment (with perfect knowledge) to transfer to reality.

If a network is believed to be vulnerable to indirect attacks,
such as link-flooding attacks, we may use the following reward:

RCross
s,t (β) = βRs,t + (1 − β)min {Rs′,t |s′ , s} (5)

where the collaboration parameter β ∈ [0,1] models the
expected degree of interference between flows, and s, s′ are
protected destination nodes in the network. The key insight
underpinning LFAs is that flows can affect a target without
communicating with that target. β then acts as a tunable
parameter which can incentivise agents to remove flows which
harm overall system health, by including the performance of
the worst-performing destination. However, such attacks (and
the effectiveness of RCross

s,t) are not examined by our work.

E. Action Space

When monitoring a source-destination pair, an agent uses its
state vector to decide which proportion of that flow’s inbound
traffic should be dropped. This is implemented by installing
an action via OpenFlow, instructing its host switch to drop
each relevant packet with probability p. We choose to drop
packets rather than impose traffic limits as it offers us a discrete
action space without prior knowledge of traffic characteristics
or measurement. Furthermore, we need not consider burstiness,
fairness or tuning (such as per-flow bucket sizes) which could
limit scalability. We offer two models on how to choose p:

1) Instant control

Each agent directly chooses p ∈ {0.0,0.1, . . . ,0.9}, giving a
discrete, static action set which cannot completely filter traffic.
These choices ensure that the rate reduction imposed on a
source IP may never be permanent or irreversible. Since this
model needs no forward planning, we found it best to set the
discount factor γ = 0 (making agents purely myopic).

2) Guarded control

The measurements of Kang et al. [7] suggest that bot attack
flows cannot scale up to match an increase in available band-
width. We apply their observations within the RL paradigm by
constraining how an agent treats each flow using a simple finite
state automaton: we restrict p ∈ {0.00,0.05,0.25,0.50,1.0}.
The action set is then simply to maintain, increase, or decrease
p for a flow in single steps. We choose these potential values
for p to add complete filtering to a steady progression of
rate-limiters (25 % increments for UDP traffic). The outlier,

p = 0.05, corresponds to roughly a 50 % rate reduction for
TCP flows in our test topology. This uneven spread of choices
for p allows light and heavy rate reduction to be applied to both
congestion-aware and congestion-unaware traffic as required.

To enable temporary bandwidth expansion in all deployments,
every flow is initially placed under light packet drop (p = 0.05);
this is chosen above the equivalent for UDP due to TCP’s higher
prevalence. Most importantly, an agent must now choose to
punish a flow multiple times in succession to cause rapid
degradation, reducing variance while allowing an agent to see
how a host reacts to structured changes in the environment.

As each agent now requires the capability to plan ahead,
we require a discount factor γ , 0, allowing the value of
future states to influence state-action value updates. We found
the setting γ = 0.8 to be the most effective choice for this
hyperparameter during exploratory testing.

3) Risks

Our mode of action means that each agent is in control of
pushback [25], and so carries a risk of introducing collateral
damage into the network. This is particularly severe when
handling TCP traffic: the Mathis equation [26] states that TCP
bandwidth is proportional to 1/√p (noting that p is nonzero in
any real network) while constant bitrate (CBR) UDP traffic is
proportional to 1 − p. This weakness is still present in modern
TCP flavours, such as TCP Cubic which in turn has bandwidth
proportional to 1/p0.75 [27]. This is of particular importance
due to the prevalence of TCP and other congestion-aware
protocols within the Internet. Our own analysis of CAIDA
datasets [28] shows that congestion-aware traffic makes up at
least 73–82 % of packets, corresponding to 77–84 % of data
volume1. QUIC, a future congestion-aware protocol, comprises
2.6–9.1 % of traffic observed on backbone links, depending on
location and typical workload [29].

This further justifies our focus on per-flow decisions—real-
world deployments see many flows pass over any egress point,
making global actions (such as those chosen by Malialis and
Kudenko [5]) more likely to inflict collateral damage. Given
the probability that a host is legitimate, PG ∈ [0,1], it follows
that a host will be malicious with probability PB = 1 − PG .
Defining imperfect service to mean any case where all n hosts
connecting over a switch do not share the same classification
(i.e., a mixture), then the probability that a switch is delivering
imperfect service is PM ,n = 1 − (Pn

G
+ Pn

B).

Theorem 1. As the host/learner ratio n increases, it is more
likely that a throttling switch will exhibit imperfect service:
∀n ∈ Z+,PM ,n ≤ PM ,n+1.

Proof. Base case: PM ,1 = 0,PM ,2 = 1−P2
G−P2

B > 0. Inductive
step: Assume that the theorem holds for n. Observe that
Pn
G
≥ Pn+1

G
(resp. PB). It then follows that:

Pn
G + Pn

B ≥ Pn+1
G + Pn+1

B

1 − (Pn
G + Pn

B) ≤ 1 − (Pn+1
G + Pn+1

B)

PM ,n ≤ PM ,n+1 �

1https://github.com/FelixMcFelix/caida-stats

0

0.2

0.4

0.6

0.8

1

Baseline

Global

IP Duration

Flow
Size

C
X

M
ean IAT

∆
In Rate

∆
Out Rate

Packets In

Packets Out

InPkts (W
indow)

OutPkts (W
indow)

M
ean InPkt Size

M
ean OutPkt Size

R
at

io
L

eg
it

Tr
af

fic
Pr

es
er

ve
d

Figure 4. Learned performance of Instant Control agents when benign traffic
is UDP-like, using only a single feature as a basis for decisions. Mean IAT,
inbound packet sizes, and global state offer the best predictive performance,
while most features offer marginal advantage over the unprotected baseline.

Corollary 1.1. Restricting PG ∈ (0,1) so that both PG and
PB are non-zero ensures strict inequality: PM ,n < PM ,n+1.

When considering that many hosts have an especially adverse
reaction to our main means of control, flow-level granularity
becomes an obvious choice.

F. Systems Considerations

Taking many actions per timestep means that any agents are
assigned a larger, and potentially unbounded, set of tasks to
perform every time they receive load and flow statistics from
the network and their parent switch. This introduces some
potential issues: the inability to respond to unexpected changes
in flow state, delayed service of new flows, and risks that flow
states become outdated. At their worst, these risks present
additional attack surface to an adversary. To adapt to these
problems, we make use of timed random sequential updates.

Each agent begins with an empty work list. For the set of
flows active in any timestep, we shuffle the list and perform as
many action calculations and updates as possible, within a set
time limit. Uncompleted work is passed on to the next timestep,
until the list is emptied, at which point it is repopulated using
the set of available measurements. To ensure that flow control
actions are made with recent information, we combine state
vectors for unvisited flows in the current work set, and replace
the stored vector for all others. State vector combination is
done by summing deltas and packet counts, updating means via
weighted sums, and replacing all other fields. Following Chen
et al.’s observations concerning short flows [30], we maintain a
deadline of 1 ms—in tests, an agent is typically able to process
around 3 flows in this time. We expect this should be tuned
based on the frequency at which statistics arrive. Naturally, this
implies that an agent must carry work forward (and coalesce
state updates) when host density is n > 3 (section VI); this
behaviour is not explicitly a property of network size.

I V. R E T H I N K I N G T H E S TAT E S PA C E

The main element required by a per-source model is a feature set
with high predictive power, so that behavioural differences are
apparent to an agent. Elaborating on the statistics discussed in
section II-C which others have shown to be effective, we believe
the following features to be useful (and humanly justifiable),
and investigate their use alongside different traffic types:
Global state: This is the vector of load measurements along
a flow’s path introduced in section III-C. These values
indicate the overall health of the network, and crucially are all

https://github.com/FelixMcFelix/caida-stats

0

0.2

0.4

0.6

0.8

1

Baseline

Global

IP Duration

Flow
Size

C
X

M
ean IAT

∆
In Rate

∆
Out Rate

Packets In

Packets Out

InPkts (W
indow)

OutPkts (W
indow)

M
ean InPkt Size

M
ean OutPkt Size

R
at

io
L

eg
it

Tr
af

fic
Pr

es
er

ve
d

Figure 5. Learned performance of Instant Control agents when benign traffic
is TCP-like, using only a single feature as a basis for decisions. All of the
chosen features can offer a marked improvement over no protection at all.
Global state and Mean IAT still offer the greatest improvement above baseline,
but packet-level statistics are considerably less effective for this class of traffic.

0

0.2

0.4

0.6

0.8

1

Baseline

Global

IP Duration

Flow
Size

C
X

M
ean IAT

∆
In Rate

∆
Out Rate

Packets In

Packets Out

InPkts (W
indow)

OutPkts (W
indow)

M
ean InPkt Size

M
ean OutPkt Size

R
at

io
L

eg
it

Tr
af

fic
Pr

es
er

ve
d

Figure 6. Learned performance of Instant Control agents when benign traffic
is TCP-like, combining each feature with the last action taken as a basis
for decisions. This combination causes a significant improvement in the
effectiveness of packet-level and per-window statistics.

measurements which an agent directly controls.
Source IP address: While trivial to spoof (and thus of limited
use for many classes of attack), reflectors are themselves
legitimate services being abused by spoofing attackers. As
a result, they communicate with attack victims using their own
IP address. In real-world scenarios the addresses of reflector
nodes might exhibit similarity due to network uncleanliness
[31], e.g., unhardened services exposed by a single organisation.
Last action taken: This encodes an agent’s current belief
in the maliciousness of a flow. This feature also potentially
allows forgiveness, serving as a reference point for determining
whether a source mistakenly marked as malicious exhibits
different falloff behaviour after punishment. It’s important to
note that this feature only makes sense once combined with
another flow feature, and never appears individually tile-coded.
Flow duration and size: Features which describe the length
of time a connection has been active, and the amount of data
transferred within that time. An extraordinarily long flow,
having sent a lot of data, could be more likely to be an amplifier:
though most (62 %) waves of amplifier traffic last shorter than
15 min [32], this is considerably longer than the typical length
of an HTTP request/response.
Correspondence ratio: The ratio between upstream and
downstream traffic for a source IP. We define this to be
CX = min(load↑t (·), load↓t (·))/max(load↑t (·), load↓t (·)), where a
value close to 0 indicates strong asymmetry.
∆ Send/receive rate: The change in traffic rates caused by
the last action. Behavioural changes induced by bandwidth
expansion/reduction are expected to be most visible here.
Mean inter-arrival time (IAT): A measure of how often
packets arrive at the agent’s parent switch; low IATs indicate
a high number of packets per second, and can be a possible
marker of malicious behaviour. We only make use of the mean
IAT of inbound traffic.

Table I
T I L E C O D I N G W I N D O W S F O R E A C H F E AT U R E .

New Feature (unit) Range

Load (Mbit/s) [0,Us]

IP [0, 232 − 1]
Last Action (%) [0, 1]
Duration (ms) [0, 2000]
Size (MiB) [0, 10]
Correspondence Ratio [0, 1]
Mean IAT (ms) [0, 10 000]
∆In/Out Rate (Mbit/s) [−50, 50]
Packets In/Out [0, 7000]
Packets In/Out Window [0, 2000]
Mean In/Out Packet Size (B) [0, 1560]

(Per-window) packet count: The amount of packets sent
to/from a source over a flow’s lifetime (or the current window
of measurement), similar in use to flow size and mean IAT.
Mean packet size per window: Legitimate flows, both TCP-
and UDP-based, often transmit packets with a distribution of
sizes. Attack traffic is not likely to be so diverse: we might
expect solely max-size packets in the case of amplification
attacks, or minimum-size packets in other flooding attacks.

The exclusion of features such as source/destination ports or
protocol numbers is a deliberate choice. If QUIC (or a similar
protocol) were to become ubiquitous, then these fields would
have little to no correlation with the class of traffic a flow
might contain. Our aim was to design around this constraint
as a form of future-proofing.

All of the above features, save for global state, are 1-
dimensional. Figure 4 shows the effectiveness of each feature
for UDP (resp. fig. 5 for TCP), on a single-destination topology
(section VI-A) with n = 2 hosts per egress point averaged
over 10 runs. Figure 6 demonstrates how feature accuracy
varies when tiled alongside last action, with similar trends
observed when applied to UDP traffic (omitted). The plots show
that different protocols and traffic classes are best defended
by different features—as such, every feature presented has
value in a complete model. All features converge to their
highest-observed performance within around 4000 timesteps.
In general, some of the most effective features are the global
state, mean IAT, mean inbound packet size and ∆ rates.

V. T R A F F I C M O D E L L I N G

We contribute network models built around live testing of
reactive TCP and UDP traffic in an SDN-enabled environment,
which is adaptable to arbitrary topologies, with an explicit focus
on preserving their real-time dynamics in a way that trace-based
evaluation cannot. First and foremost, we are interested in
representative load and packet inter-arrival characteristics and
in how these characteristics evolve in response to actions. We
introduce these models because we are interested in capturing
interactive, correlated back-and-forth exchanges associated with
live HTTP traffic; mainly because of the particular interactions
between the application-level dynamics, congestion awareness
at the transport level and the nature of control signal used.

A. Network Design

We make use of a fully software-defined network, built using
OpenFlow-aware switches in mininet alongside a controller
based on Ryu [33]. All internal routers are primed with
knowledge of the shortest path to each internal host, while new
inbound flows register the “way back” for each hop used, to

ensure consistent traffic conditions for each flow. If several
ports offer different (equal-length) paths to a destination, a
consistent random port is chosen from the flow-hash by an
OpenFlow Group action (in select mode). If such information
is lost, perhaps expiring due to inactivity, it suffices to forward
an outbound packet on a random outbound port, as we assume
that any external IP is reachable through any of the test
network’s egress ports (i.e., that it is not connected to any
stub ASes). The controller is also responsible for computing
how switches respond to ARP requests: this need arises due to
the reliance upon Linux’s networking stack for live applications,
and wouldn’t need to be considered for trace-based evaluation.

B. TCP (HTTP) Traffic Model

To model legitimate TCP traffic, server nodes run an nginx
v1.10.3 HTTP daemon, serving statically generated web pages
alongside various large files and binaries. Benign hosts run
a simple libcurl-based application written in Rust, repeatedly
requesting resources from the server. Hosts and clients both use
TCP Cubic [27]. Each host’s download rate is limited to match
the maximum bandwidth assigned to it, and requests several
random files known to exist within a website, followed by any
dependent resources for each (stylesheets, images, etc.) as a
browser might. On completion, a host changes its IP to generate
separate statistics per-flow, while minimising downtime. This
presents a balanced distribution of flow duration and size, with
large files included to model elephant flows.

C. UDP (Opus/VoIP) Traffic Model

VoIP traffic exhibits very different characteristics to the above
model; packet arrivals are highly periodic due to real-time
requirements, flows have a constant bitrate, and do not react
substantially to lost packets. Interestingly, DDoS attack traffic
is known to share many of these characteristics, offering
an interesting detection problem. We present a VoIP traffic
model2 based on Discord3, a freely-available messaging and
VoIP platform geared toward gaming communities. We chose
Discord as our prototype due to its publicly documented API,
many open source bot frameworks, large user base, and due
to the lack of models for Opus-encoded traffic.

Hosts send RTP traffic with Salsa20 encrypted payloads—
20 ms audio frames at 96 kbit/s. We generate similar traffic at
hosts by replaying anonymised traces gathered in general use
and tabletop RPG servers; each trace contains only the size of
each audio payload, entries denoting missed packets, and the
duration of silent periods. We trim these silent periods to a
maximum 5 s due to the lengthy talk/silence bursts introduced
by users in RPG servers, and estimate the size of missed
packets by taking an exponentially-weighted moving average
over known sizes. Hosts punctuate audio frames with a 4-byte
keepalive every 5 s. All traffic passes over a central server which
groups hosts into rooms, and is forwarded to other participants;
we do not replicate pre-call Websocket traffic which would be
used for authentication. There is no peer-to-peer traffic—the
server acts as a TURN relay for all hosts. We find that each
flow occupies an expected 52.4 kbit/s upstream bandwidth. To

2https://github.com/FelixMcFelix/opus-voip-traffic
3https://discord.gg

match the target upload rate assigned to each host, it runs
enough individual sessions to meet the target data rate.

D. Attack Traffic Model

Malicious traffic is generated by use of the hping3 program,
generating UDP-flood traffic targeting random ports. We
configure each instance of hping3 to generate ethernet MTU-
sized packets (1500 B) with a random source and destination
port towards a target server, and configure the output rate r (in
Mbit/s) by setting the inter-arrival time tattack =

1500·8
r ·106 . This

fulfils certain characteristics of many types of amplification
DDoS traffic: it is congestion-unaware [10], and packets are
larger than the minimum frame size and identically-sized (e.g.,
NTP amplification traffic is fragmented at the application layer
into 482 B chunks [34]). We differ from NTP amplification
in frame size so that inter-arrival times are larger, to keep
emulation of the network feasible at high traffic rates.

V I . E VA L U AT I O N

We compare our work most naturally against MARL, introduced
by Malialis and Kudenko [5], the state-of-the-art in RL-based
DDoS prevention. We are most interested in seeing how their
approach contrasts with ours across different topologies and
workloads. Different network environments will also impose
different levels of host density, where popular web servers may
have orders of magnitude more clients than egress points from
their network—we aim to see how these characteristics affect
performance and learning rate. Marl is known to outperform
the AIMD [35] strategy, yet the state of the art has long
since moved on. To paint a more current picture, we compare
our work against an effective modern approach, SPIFFY [7].
SPIFFY tests a proportion of flows by routing them through an
alternate path with higher bandwidth, observing how their speed
changes some time later. This comparison lets us position our
new agent designs against the state of the art, observing that
SPIFFY has a similar mode of interaction to RL-based systems
(taking action, observing an effect, and acting once again)
and does not rely on protocol characteristics or signatures.
We make the simplifying assumption that a suitable unused
path exists (with identical bandwidth to the server’s link). We
test 10 % of active flows at a time (according to the authors’
observation that there is a factor of 10 difference between
the ideal and achieved bandwidth expansion), excluding flows
below 50 kbit/s and requiring a 3× expansion from legitimate
flows, making a judgement after 5 s.

To test this, we made use of both traffic models introduced
in section V (OPUS and TCP), both topologies discussed
below (1-dest vs Fat-Tree), and vary the amount of hosts
typically communicating over each agent’s ingress/egress node.
Additionally, we evaluated our new models in multi-agent
mode (separate, no model sharing), and in single-agent mode
(single, 0-cost perfect information sharing). In each case, the
algorithm’s performance was averaged over 10 episodes of
length 10 000 timesteps (setting each agent’s w = 0 between
episodes). Host allocations at the beginning of each episode
were generated pseudorandomly to ensure fairness between
episodes—a host is malicious with probability P(malicious),
and is benign otherwise. Benign hosts generate traffic from

https://github.com/FelixMcFelix/opus-voip-traffic
https://discord.gg

Server Core

Leader

Intermediate

Agent/Egress

Host

Us

... k

... `

... m

... n

Figure 7. Network topology diagram, showing how the server and its core
switch’s k teams are structured, with ` intermediate routers per team, connected
to m agents which each moderate n hosts beyond a single external switch.
Red nodes are external, and each blue node hosts an agent.
either sections V-B and V-C depending on the experiment,
while malicious hosts generate traffic according to section V-D
(both at experiment-dependent rates).

All experiments were executed on Ubuntu 18.04.2 LTS
(GNU/Linux 4.4.3-040403-generic x86 64), using a 4-core
Intel Core i7-6700K (clocked at 4.2 GHz) and 32 GiB of RAM.
All code underpinning these findings is available on a public
repository4.

A. Single Destination

The network is tree-structured, where one server s connects
through a dedicated switch to k team leader switches, each
connected to ` intermediate switches, which in turn each
connect to m egress switches. We then have Nhosts = k`mn.
Figure 7 demonstrates this. We configured the network topology
using k = 2 teams, ` = 3 intermediate nodes per team, m = 2
agents per intermediate node, and n ∈ {2,4,8,16} hosts per
learner. This is a slight simplification of Malialis and Kudenko’s
‘online’ experiment [5], choosing fewer teams but remaining
as a single server with a fan-out network.

B. Multiple Destinations

The previous topology allows for direct comparison against
the state-of-the-art, and indeed is illustrative of one way in
which attack traffic might aggregate in the network. It is hard,
however, to argue its relevance to specific classes of victim or
to reason about the interactions it might have with dependent
applications. In contrast, the fat-tree topology [36] sees regular
use in real-world datacentres and scales well horizontally. We
use a k = 4 fat-tree, with one pod hosting two servers s0 and s1.
n external hosts connect through each core switch (where agents
are hosted), and communicate with s0, s1 uniformly randomly.
Both servers host identical services. We set n ∈ {6,12,24,48}
hosts per learner (keeping Nhosts identical to each tier of the
single-host topology), and restrict Us0 = Us1 = Us/2.

C. Parameters

The algorithm parameters were set at α = 0.05, linearly
annealing ε = 0.2 → 0 by t = 3000 in the case of Marl
(8000 actions per agent in the Instant/Guarded models).

Benign hosts each occupied 0–1 Mbit/s, and hosts were
redrawn at each episode’s start with P(malicious) = 0.4.
Malicious hosts each sent 2.5–6 Mbit/s when attacking UDP
traffic, though this was increased to 4–7 Mbit/s when using
TCP-like traffic (to meaningfully impact benign flows). Given
n and P(malicious), we see an expected malicious bandwidth

4https://github.com/FelixMcFelix/rln-dc-ddos-paper

Table II
AV E R A G E R E WA R D F O R C O M B I N AT I O N S O F M O D E L , H O S T

D E N S I T Y A N D T R A F F I C C L A S S W I T H A S I N G L E D E S T I N AT I O N .

Traffic n SPIFFY Marl Instant Guarded

Separate Single Separate Single

OPUS 2 0.043 0.628 0.629 0.448 0.430 0.629
4 0.069 0.538 0.653 0.449 0.308 0.571
8 0.065 0.468 0.533 0.516 0.398 0.507

16 0.053 0.460 0.438 0.452 0.347 0.504
TCP 2 0.799 0.305 0.061 0.068 0.241 0.196

4 0.953 0.359 0.191 0.097 0.278 0.504
8 0.995 0.362 0.376 0.201 0.357 0.605

16 0.999 0.320 0.316 0.302 0.478 0.708

Table III
AV E R A G E R E WA R D F O R C O M B I N AT I O N S O F M O D E L , H O S T

D E N S I T Y A N D T R A F F I C C L A S S W I T H M U LT I P L E D E S T I N AT I O N S .

Traffic n SPIFFY Marl Instant Guarded

Separate Single Separate Single

OPUS 6 0.092 0.382 0.300 0.170 0.307 0.189
12 0.096 0.217 0.322 0.275 0.333 0.235
24 0.125 0.404 0.358 0.296 0.382 0.461
48 0.110 0.430 0.418 0.438 0.427 0.428

TCP 6 0.692 −0.222 0.123 −0.018 0.121 0.116
12 0.896 0.008 0.132 0.008 0.163 0.266
24 0.974 0.063 0.130 0.024 0.337 0.390
48 0.995 0.156 0.219 0.111 0.431 0.499

1.27–1.87 and 2.03–2.18×Us respectively. For our choices of
n in both topologies, we observe Nhosts ∈ {24,48,96,192},
and an expected number of malicious hosts E [Nattackers] ∈
{9.6,19.2,38.4,76.8}. For the largest choice of n, we see
an expected total attack traffic E [Vattack] = 334.05 and
422.4 Mbit/s for Opus and HTTP traffic respectively.

Us was fixed at Nhosts + 2 Mbit/s (to account for burstiness),
and each link had a delay of 10 ms. All links had unbounded
capacity, save for each server-switch. These parameters match
those of the original study to enable direct comparison, and
many are (to the best of our knowledge) arbitrary, but we justify
our range of n as capturing increasing scales of host activity.

V I I . R E S U LT S

We now examine the performance of our two new models
(Instant, Guarded) as compared against existing RL work (Marl)
and SPIFFY under different traffic behaviour and topologies,
varying the host-to-learner ratio n and environment. We present
the average rewards for all combinations of these factors in
tables II–III—providing a rough idea of expected performance,
with the highest-performing model in bold and the best RL-
based model underlined. Average rewards take into account
any portions of time that an agent allows illegal system states.
Several plots augment this, illustrating peak performance or
the amount of time which an agent requires to learn.

A. Congestion-unaware traffic

In a single-destination network, we observe that Marl’s
performance degrades as n increases. Typically, our Instant
agent design achieves the best performance in multi-agent mode,
having lower collateral damage than the current state-of-the-art,
but sharply degrades at low n when agents share experience.
This trend reverses for the Guarded model, which improves as
n increases and in single-agent mode—when n ≥ 4, the single-
agent variant offers consistent improvement. Figure 8 shows the
preserved traffic in multi-agent mode. When defending multiple
destinations, we see a sharp decrease in the effectiveness of all

https://github.com/FelixMcFelix/rln-dc-ddos-paper

0

0.2

0.4

0.6

0.8

1

SPIFFY

M
arl

Instant

Guarded

SPIFFY

M
arl

Instant

Guarded

SPIFFY

M
arl

Instant

Guarded

SPIFFY

M
arl

Instant

Guarded
n = 2 n = 4 n = 8 n = 16

R
at

io
L

eg
it

Tr
af

fic
Pr

es
er

ve
d

Figure 8. Online performance for Opus benign traffic in a single-destination
network, multi-agent mode. Instant outperforms Marl for n ∈ {4, 8} (with
higher variance), but performs similarly to Marl at n ∈ {2, 16}. Guarded
underperforms compared to the other agent designs in this problem variant.

0

0.2

0.4

0.6

0.8

1

SPIFFY

M
arl

Instant

Guarded

SPIFFY

M
arl

Instant

Guarded

SPIFFY

M
arl

Instant

Guarded

SPIFFY

M
arl

Instant

Guarded
n = 2 n = 4 n = 8 n = 16

R
at

io
L

eg
it

Tr
af

fic
Pr

es
er

ve
d

Figure 9. Online performance for HTTP benign traffic in a single-destination
network, single-agent mode. Instant and Guarded exhibit similar efficacy at
n = 2, protecting less traffic than Marl. Only Guarded’s performance rapidly
increases with n, achieving a considerably better median and lower variance
than the other models. The longer tails of outliers typically indicate the longer
training time the new models require—we observe that Guarded typically has
considerably lower variance once it has converged on a stable policy.

agent designs. Our new agent designs become more effective
as n increases, while Marl’s effectiveness is roughly constant
(aside from the outlier at n = 12). Interestingly, SPIFFY is
unable to effectively protect constant bitrate traffic.

B. Congestion-aware traffic

Table II shows that Marl offers a low (though fairly consistent)
level of protection for TCP traffic, which the Instant agent
offers no substantial improvement over. However, Guarded
agents offer a remarkable improvement for this class of traffic,
particularly when experience can be shared—offering a 2.21×
improvement over the state-of-the art during training, which
is made clearer in fig. 9. Figure 10 shows that this model
can protect a peak 80 % of TCP traffic (2.5× improvement)
after just 100 s, but also that all of the new models require
considerably longer than Marl to learn their best-achieving
policy. We observe that the same trends present themselves in
the multi-destination topology: Guarded remains the best fit

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

R
at

io
L

eg
it

Tr
af

fic
Pr

es
er

ve
d

Iteration (t · 50ms)

Marl
Instant

Guarded
Instant (Single)

Guarded (Single)
Unprotected

Figure 10. Online performance of standard and single-agent models in a single-
destination network with n = 16 hosts per egress point, HTTP traffic. At this
level of host density, Guarded reaches higher peak performance sooner and is
considerably more consistent throughout the episode. Guarded benefits greatly
from information sharing, converging to protect around 75 % of TCP traffic
within 100 s. The Instant model converges to Marl’s level of performance.

Table IV
AV E R A G E R E WA R D V E R S U S AT TA C K V O L U M E .

Factor E [Vattack] (Mbit/s) Reward

1.5 633.6 0.671
2.0 844.8 0.625
2.5 1056.0 0.620
3.0 1267.2 0.619
3.5 1478.4 0.600

for TCP, in both training modes. Crucially, the rigid tree of
learners and teams which define Marl, along with its lack of
action granularity, seem to be a poor fit in this environment. In
both cases, SPIFFY greatly outperforms the RL-based methods.

C. Increased Attack Volume

To assess the effect of larger volumes of attack traffic, we
increase an attacker’s output by various factors, supposing
n = 16 with HTTP traffic (Guarded, Single); table IV records
the expected rate of attack and average performance. The
initial increase in traffic volume causes the steepest reduction
in performance (due to the increased cost of incorrect action),
though performance levels out as attack traffic increases.

D. Computational Cost

Measurements from each of these experiments indicated that the
cost of computing any action is typically within 80–100 µs per
flow. This is reassuring when measured alongside the insights
from other work. Chen et al. [30] observe that, ideally, actions
must be computed and taken within 1 ms to have a meaningful
affect on short flows. That our starting point falls significantly
below this threshold allows us to safely consider more costly
actions or larger state spaces, which would typically increase
the computational cost. This cost is constant and independent
of network size. As discussed in section III-F, we are able to
judge 3 flows before this deadline: the difference is primarily
accounted for by serialisation/communication delays and single-
threaded processing in the Python language.

V I I I . D I S C U S S I O N

Model performance: Of the results presented, Guarded’s
unpredictable (often worse) starting performance is unexpected,
given its far smaller action space. It’s natural to expect that this
would make the model easier to learn, but the additional state
required appears to make the task harder, beyond even the
value of choosing a non-zero discount factor (adding forward-
planning to explicitly mitigate this effect). Accordingly, we
see that this design performs best (and exhibits considerably
lower variance) when agents learn from as much knowledge as
possible: high n and single-agent training. To filter incoming
traffic from a source, it must decide to degrade inbound traffic
multiple times in a row, reducing the likelihood that a legitimate
flow is punished by accident. Our belief is that Guarded is a
considerably stronger model for these reasons, and its successes
offer strong rationale to consider the best schemes for efficient
information sharing. Paradoxically, Instant generally achieves
the best performance for UDP traffic yet actively suffers when
trained as a single learner—this may occur due to a roughly
even spread of values between disparate actions, due to shared
characteristics between legitimate and malicious flows.

Although we have improved upon Marl in both identified
problem cases, the improvements are not quite on the order

we’d expect for UDP traffic. The most likely explanation is
that agents are converging to, and becoming stuck in, locally
optimal (but globally sub-optimal) policies. The increased
state space size makes this a more likely occurrence, as does
the unclear effect of hyperparameters (α, γ) as we scale up
the state space. We suspect that these difficulties may be
exacerbated by the competitive nature of learning that these
models embody: agents are learning action values for multiple
features simultaneously, taking many actions at once (making it
harder to observe the true value of each action), and controlling
shared global state. Although our design does take steps to
counteract such effects, these mitigations may not be enough.
Moreover, benign UDP traffic shares many characteristics
with attack traffic, suggesting that more training samples or
some unknown feature might aid control, or that it may be
worthwhile to extensively pre-train agents non-competitively
on each feature using individual flows.

Most importantly, what we wish to impart is the knowledge
that while the models and techniques we present here are
a significant improvement over past RL-based work, this
strand still trails behind existing (exact) DDoS flow detection
mechanisms where TCP traffic is concerned. The ability
to better protect VoIP traffic when compared against one of
these approaches is a curious observation, which suggests that
other (exact) protocol-agnostic approaches may carry hidden
assumptions and is a promising direction for future investigation.
Similar traffic makes up a significant fraction of network load
today (18–27 %). Although we have conducted work to map the
territory, there are still more advancements to be made before
RL-based DDoS defence is truly competitive. The benefits
we have at present are, however, substantial. What we offer
above many of the approaches we discuss in section IX are
potentially more flexible deployments, low-overhead and fixed-
cost decision-making, without requiring active measurement or
the network resources and capabilities that the most effective
techniques rely upon. Moreover, our decision making processes
are entirely agnostic of the protocol or content of traffic, offering
future-proofing against the introduction of new transports.
Security concerns and vulnerability: Can an agent be flooded
with new flows to reduce their ability to make decisions? One
of the risks introduced by our policy update strategy is that so
much work can be queued up that an agent is never able to act on
some attack flows. The natural solution is to impose an upper
bound on the amount of action computations/policy updates
that can be performed before a work list is discarded completely.
This removes the guarantee that all flows will be visited fairly
often, but if updates occur regularly then this random sampling
may be sufficient to achieve good performance.

Can an attack on the controller can impact our approach?
This question hinges upon whether the deployment environment
is a traditional network or is fully SDN-enabled—each agent
is, in a sense, a controller alongside the network’s controller.
In a traditional network, only the agents act as controllers,
but since they periodically request per-flow data (rather than
continuously receiving it) no amount of flows generates more
requests or messages to the agent. More work is generated,
but we discuss how to handle this safely above. Accordingly,
agents can never be stalled by request volume: their only remote

communication (load measurements) comes from trusted nodes,
is highly periodic, and has constant size. The same logic holds
for a fully software-defined network. Recalling that we do
not employ the network’s controller to install filtering rules on
edge switches, an agent’s ability to act is unimpeded. Thus,
the controller is made no more vulnerable than in any other
SDN. The only necessary change for such a scenario is that
a load measurement which has not been updated (due to a
timeout or missed deadline) should be set at Rt = −1.

Machine learning algorithms have earned a reputation for
eluding human interpretation, while being vulnerable to evasion
and poisoning. Given the security risks associated with
introducing such techniques, it is natural to be concerned with
the interpretability of the models we have proposed. With the
exception of global state, the tile coding parameters we make
use of ensure that the set of outputs for each feature we add is
relatively enumerable: for n tilings and c tiles per dimension
there are ncdim f individual action value vectors per feature
f (48 for the new features we introduce, 10 368 for global
state), though considerably more combinations thereof (cn ·dim f).
Furthermore, system state which is dependent on many signals
drawn from across a wide network (such as our global state) is
difficult to exert precise control over. These signals’ topological
separation, in concert with their burstiness and unpredictability,
may have substantial effects on an attacker’s capabilities.
Real-world Deployment: Currently, we assume that switches
support an extension to OpenFlow to enable remotely installable
packet-drop rules, either by running a modified version of OVS
on commodity hardware at these locations or through custom
firmware for egress switches. Similar functionality could be
employed by making use of OpenFlow’s meter rules.

Where overheads are concerned, the state space sizes
guarantee that an Instant agent’s policy remains under 520 KiB,
although in practice our sparse representation typically leads to
far smaller policies: ∼17.8 KiB from our experiments. Guarded
policies are 30 % of this size. As we have described earlier,
action updates require a constant number of floating point
operations—160 floating point additions and 32 multiplications
per update of w with per-tile updates, above the 160 additions
required to choose an action. The vast majority of these
operations can be vectorised trivially, if such hardware is
present. Action computation for Guarded agents is cheaper still,
requiring only 48 additions per action. Beyond this, we require
that egress switches are capable of co-hosting an agent (i.e.,
through network function virtualisation), with the necessary
hardware to support this. We believe that it may be possible to
implement similar behaviour on standard commodity switches
through application of programmable data planes [37].

Gathering and transmission of load/flow statistics would
be difficult to perform as often as an emulated environment
allows, without inadvertently affecting host traffic. However,
the measurements acquired in such a scenario are likely to be
less noisy (by being collected over longer periods of time),
which could aid training. The main bottlenecks are likely in
forwarding the load measurements from various aggregation
points (which can be made more efficient through multicast)
and in running some estimator g(·) to condition the reward
function. We expect that agents will be able to share policies

for all features, which may help to offset the reduced rate of
incoming experience. Regardless, it will take longer to achieve
enough state-state transitions to converge on a good policy.

One limit of SDN-capable hardware is that OpenFlow rules
occupy 6× the space of standard rules—commercial switches
only have TCAM space for 2–20 k rules [38]. Our approach
consumes a rule for each active flow (the host density), and by
the end of an experiment a switch can accrue around 900 rules.
While we use a default fallback action to maintain connectivity,
eviction of high-value decisions which filter high-bandwidth
attackers poses a significant risk. Given that most flows are
small (with the majority of bytes coming from a few “heavy-
hitters”) [39], it may suffice to only apply RL-based analysis to
larger flows. OpenFlow rules have an importance, controlling
which rules may be evicted by a new entry (preventing entries
from evicting those with higher importance). If an agent is
to act on all flows, a solution is to assign an importance of
0 to mice flows, 1 to elephant flows, and 2 to total filtering
(leaving agents to time out and remove elephant flow rules to
prevent bloat). Given the high churn and prevalence of mice
flows, eviction here is most likely to affect flows which are
complete. In both cases, extra rules can be made available by
upgrading rules which completely filter a flow into upstream
blackholing (as in collaborative approaches [40]), having the
agent remove this rule once blackholing is active.

I X . R E L AT E D W O R K

DDoS Prevention: Braga et al. [41] examine the detection
of flooding DDoS attacks through self-organising maps, using
SDN to gather statistics effectively. Many of their features
aren’t overly relevant, as their focus is not active defence or
discovering which hosts contribute to an attack. The closest
available approach within this field is that of Malialis and
Kudenko [5] (whom we have positioned our work against),
and their contribution in applying RL to the task of intrusion
prevention is significant: their work helps to show the viability
of live, adaptive, feedback-loop-like control of the network to
detect and prevent DDoS attacks. They create a tree overlay
topology (subdivided into teams), where each agent applies
packet drop to all flows inbound to a protected server. Our
results show that their technique underperforms at high host
density and when congestion-aware traffic dominates—that
their results do not demonstrate this suggests an evaluation
driven purely by traces (rather than live application dynamics).

SPIFFY [7] aims to remedy transit-link attacks by observing
how flows from each source respond to a sudden increase in
available bandwidth. Kang et al. realise that bots participating
in an attack are often unable to match this bandwidth expansion
(having already saturated the capacity of their outbound links),
while legitimate flows typically speed up to match the new
fair-share rate. A weakness of their approach is that computing
a route to measure bandwidth expansion on real networks can
be costly (up to 14 s for the Cogent topology), and that the low
expansion factors in real network can require more “rounds”
of filtering. By contrast, our approach takes a constant time
to compute an action for a flow regardless of topology size.
Their assumptions about traffic response to such bandwidth
expansion do not hold for constant bitrate flows (e.g., VoIP)

and may not extend to HTTP DASH flows, both of which
make up a sizeable proportion of network traffic.

Athena [15] is a generalised SDN framework for intrusion
detection, but has shown the use of a k-nearest neighbours
classifier to detect individual attack flows. Although heavy-
weight (and proven to be effective compared with Braga et al.
[41]), their comparison against SPIFFY lacks the quantitative
evidence required to understand how the system compares.
Smith and Schuchard [42] use AS-level routing to tackle both
transit-link and flooding-based attacks. This view is taken
due to the perceived cost of per-stream classification and
inherent sensitivity to adversarial examples. The approach is
creative, relying upon BGP fraudulent route reverse poisoning
to preserve traffic to a target AS, but unlike SPIFFY the
approach doesn’t actually remove the congestion. Because
of this, flooding-based attacks aren’t fully alleviated.
RL in Networks: Earnest, well-considered application of
RL towards the challenge of intrusion prevention has seen
comparatively little examination. Past work treats the paradigm
as a traditional classifier for anomaly detection [43] and DDoS
prevention [44]. Given that the main strengths of RL techniques
are the ability to control ongoing interaction and adapt by
observing the concrete effects of actions, such works don’t
apply the rich literature on the subject to its fullest potential.

For categorising how RL fits into solving problems, we label
works as direct- or indirect-control RL. A direct-control RL
problem is one where the RL agent(s) learn optimal control
over a set of actions as the primary defence or decision-
maker—requiring measurements, reward functions and action
sets tailored for this purpose. To date, the best-fitting example
we have encountered is that of Malialis and Kudenko [5].
An indirect-control RL problem is one where agents act in
service to another technique responsible for decision-making,
optimising or generalising aspects of its operation beyond that
of hand-coded heuristics. A past example includes learning
when best to share knowledge between hidden Markov model
anomaly detectors [45]. This work is weakened by its reliance
on the problematic ‘DARPA99’ dataset [2], but the idea itself
is well-treated. Outside of intrusion detection, there has been
growing interest in the use of RL in data-driven networking,
such as for intra-AS route optimisation [46] and resource-
constrained process allocation [47]. Mao et al. [48] employ
client-side observations of network state and video performance
with RL to optimise bitrate selection for multimedia streaming.
AuTO [30] employs deep RL to perform traffic optimisation.
Crucially, they find that the vast majority of flows are short-
lived, requiring effective decisions in less than a millisecond.
To overcome the high latency of action computation via a
neural network, two agents are trained, handling aspects of
short and long flows respectively. The first learns to optimise
the flow size thresholds to demarcate long and short flows;
these short flows are routed by ECMP. The second agent makes
bespoke decisions about routing, prioritisation etc. for each of
the remaining long flows.

X . C O N C L U S I O N S A N D F U T U R E W O R K

Through this paper, we have discussed reinforcement learning
and its relevance to network intrusion prevention. We believe

the potential to learn feedback loop-like control online and
against non-stationarity makes it particularly suited to the
problems endemic to the field. We identified weaknesses in
past work, recommending an RL agent which acts per flow,
and have outlined the algorithmic and engineering choices
needed to make its deployment feasible. Supporting this,
we’ve presented an in-depth examination of our feature space,
offering quantitative and qualitative justification for our choices.
Our evaluation shows that our new agent designs considerably
advance the state-of-the-art in RL-based DDoS prevention, with
Guarded agents showing the most promise for future evaluation.

The most direct improvements to be made lie in the correct
protection of legitimate UDP traffic, which our agent designs
have difficulty safeguarding. Outside of this, there is scope
to test these new techniques against link-flooding attacks in
large-scale topologies using reward functions such as eq. (5).
Simulation is the most likely avenue for such evaluation.

The remaining weaknesses invite many improvements worth
investigation. A problem we raised (without a clear solution)
was the design of reward functions which do not rely upon
heuristic estimates or a priori knowledge of benign traffic
content. If true online learning is desired (i.e., coping with a
non-stationary environment), then such reward functions are
sorely needed. While loadlt (·) is likely to be a good candidate
for many deployments, we believe that finding an effective
metric derived from the individual statistics we suggested serves
as an interesting research problem.

Given that one of the advantages of RL methods is the ability
to handle non-stationary problems, it is important to propose
and test sensible simulations or captures of evolving networks.
While it is known that DDoS attack strategies evolve in real
time [49], evaluation is difficult at present since no works
detail what patterns such evolution might take. Regardless,
these scenarios present ideal circumstances to apply adaptive
exploration [50], changepoint detection, or intelligent sampling
methods to judge which flows are most worthy of consideration.
For estimating when to explore, we believe that the intersection
of signal processing and RL is as-yet unexplored.

Effective real-world deployment of RL-based defences cannot
assume that switches in a network will support a custom version
of OVS or other arbitrary software, introducing the question
of whether agent training, execution and distribution may be
possible when using programmable data planes [37]. We also
expect it will be fruitful to look into how agents may share
knowledge with one another.

Although we believe that the security landscape for classical
RL models is not identical to that of neural-network based
approaches (particularly with such noisy, volatile, and hard-to-
control data), there is still immense value in determining the
exact capabilities of a sufficiently powerful adversary as the
risk of external control still exists. In particular, we believe that
poisoning attacks and evasion attacks merit close consideration.

We hope it is clear that reinforcement learning holds promise
and can inspire further innovation. It allows us to offer
distinct advantages above existing works, such as protocol-
agnostic DDoS flow detection, flexible deployment, and
automatically learned low-overhead decision-making—without
requiring many of the network resources or capabilities that

other techniques rely upon. It’s hoped that more research in
this direction will open the door to works which respect the
complexity of the network; evolving topologies, natural change
in traffic and protocol distributions, and the mutation of attacks.

A C K N O W L E D G E M E N T S
The authors would like to thank Colin Perkins, Mircea Iordache,
Qianru Zhou, Charles Rutherford, Marco Cook and Cristian
Urlea for their advice and technical assistance, and their
anonymous reviewers. This work has been supported in part by
the UK Engineering and Physical Sciences Research Council
[grants EP/N509668/1, EP/N033957/1 and EP/P004024/1] and
European Cooperation in Science and Technology (COST)
Action CA15127: RECODIS—Resilient communication and
services. R E F E R E N C E S

[1] M. H. Bhuyan et al., ‘Network anomaly detection: Methods, systems
and tools’, IEEE Communications Surveys and Tutorials, vol. 16, no. 1,
pp. 303–336, 2014.

[2] R. Sommer and V. Paxson, ‘Outside the closed world: On using
machine learning for network intrusion detection’, in 31st IEEE
Symposium on Security and Privacy, S&P 2010, 16-19 May 2010,
Berleley/Oakland, California, USA, 2010, pp. 305–316.

[3] S. Axelsson, ‘The base-rate fallacy and its implications for the difficulty
of intrusion detection’, in CCS ’99, Proceedings of the 6th ACM
Conference on Computer and Communications Security, Singapore,
November 1-4, 1999., 1999, pp. 1–7.

[4] W. E. Leland et al., ‘On the self-similar nature of ethernet traffic’,
Computer Communication Review, vol. 25, no. 1, pp. 202–213, 1995.

[5] K. Malialis and D. Kudenko, ‘Distributed response to network
intrusions using multiagent reinforcement learning’, Eng. Appl. of AI,
vol. 41, pp. 270–284, 2015.

[6] A. Langley et al., ‘The QUIC transport protocol: Design and internet-
scale deployment’, in Proceedings of the Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM 2017,
Los Angeles, CA, USA, August 21-25, 2017, 2017, pp. 183–196.

[7] M. S. Kang et al., ‘SPIFFY: inducing cost-detectability tradeoffs
for persistent link-flooding attacks’, in 23rd Annual Network and
Distributed System Security Symposium, NDSS 2016, San Diego,
California, USA, February 21-24, 2016, 2016.

[8] M. Jonker et al., ‘Millions of targets under attack: A macroscopic
characterization of the dos ecosystem’, in Proceedings of the 2017 In-
ternet Measurement Conference, IMC 2017, London, United Kingdom,
November 1-3, 2017, 2017, pp. 100–113.

[9] M. Antonakakis et al., ‘Understanding the mirai botnet’, in 26th
USENIX Security Symposium, USENIX Security 2017, Vancouver, BC,
Canada, August 16-18, 2017., 2017, pp. 1093–1110.

[10] C. Rossow, ‘Amplification hell: Revisiting network protocols for
ddos abuse’, in 21st Annual Network and Distributed System Security
Symposium, NDSS 2014, San Diego, California, USA, February 23-26,
2014, 2014.

[11] M. Kührer et al., ‘Exit from hell? reducing the impact of amplification
ddos attacks’, in Proceedings of the 23rd USENIX Security Symposium,
San Diego, CA, USA, August 20-22, 2014., 2014, pp. 111–125.

[12] M. S. Kang et al., ‘The crossfire attack’, in 2013 IEEE Symposium
on Security and Privacy, SP 2013, Berkeley, CA, USA, May 19-22,
2013, 2013, pp. 127–141.

[13] A. Studer and A. Perrig, ‘The coremelt attack’, in Computer Security -
ESORICS 2009, 14th European Symposium on Research in Computer
Security, Saint-Malo, France, September 21-23, 2009. Proceedings,
vol. 5789, 2009, pp. 37–52.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. MIT Press, Nov. 2018.

[15] S. Lee et al., ‘Athena: A framework for scalable anomaly detection in
software-defined networks’, in 47th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN 2017, Denver,
CO, USA, June 26-29, 2017, 2017, pp. 249–260.

[16] N. Papernot et al., ‘The limitations of deep learning in adversarial
settings’, in IEEE European Symposium on Security and Privacy,
EuroS&P 2016, Saarbrücken, Germany, March 21-24, 2016, 2016,
pp. 372–387.

[17] N. Papernot et al., ‘Sok: Security and privacy in machine learning’, in
2018 IEEE European Symposium on Security and Privacy, EuroS&P
2018, London, United Kingdom, April 24-26, 2018, 2018, pp. 399–414.

[18] S. H. Huang et al., ‘Adversarial attacks on neural network policies’,
CoRR, vol. abs/1702.02284, 2017. arXiv: 1702.02284.

[19] N. Carlini and D. A. Wagner, ‘Towards evaluating the robustness of
neural networks’, in 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017, 2017, pp. 39–57.

[20] F. Tramèr et al., ‘Stealing machine learning models via prediction
apis’, in 25th USENIX Security Symposium, USENIX Security 16,
Austin, TX, USA, August 10-12, 2016., 2016, pp. 601–618.

[21] Y. Han et al., ‘Adversarial reinforcement learning under partial observ-
ability in software-defined networking’, CoRR, vol. abs/1902.09062,
2019. arXiv: 1902.09062.

[22] A. H. M. Jakaria et al., ‘A requirement-oriented design of nfv topology
by formal synthesis’, IEEE Transactions on Network and Service
Management, pp. 1–1, 2019.

[23] The Linux Foundation. (2018). Open vswitch, [Online]. Available:
https://www.openvswitch.org/ (visited on 02/05/2018).

[24] R. Dobbins et al., ‘Use cases for DDoS Open Threat Signaling’,
Internet Engineering Task Force, Internet-Draft draft-ietf-dots-use-
cases-17, Jan. 2019, Work in Progress, 14 pp.

[25] R. Mahajan et al., ‘Controlling high bandwidth aggregates in the
network’, Computer Communication Review, vol. 32, no. 3, pp. 62–73,
2002.

[26] M. Mathis et al., ‘The macroscopic behavior of the TCP congestion
avoidance algorithm’, Computer Communication Review, vol. 27, no. 3,
pp. 67–82, 1997.

[27] I. Rhee et al., CUBIC for Fast Long-Distance Networks, RFC 8312,
Feb. 2018. D O I: 10.17487/RFC8312. [Online]. Available: https://rfc-
editor.org/rfc/rfc8312.txt.

[28] CAIDA. (2018). The CAIDA UCSD anonymized internet traces
– 2018, [Online]. Available: http : / /www.caida.org/data /passive/
passive dataset.xml (visited on 11/05/2019).

[29] J. Rüth et al., ‘A first look at QUIC in the wild’, in Passive and Active
Measurement - 19th International Conference, PAM 2018, Berlin,
Germany, March 26-27, 2018, Proceedings, vol. 10771, 2018, pp. 255–
268.

[30] L. Chen et al., ‘Auto: Scaling deep reinforcement learning for
datacenter-scale automatic traffic optimization’, in Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data
Communication, SIGCOMM 2018, Budapest, Hungary, August 20-25,
2018, 2018, pp. 191–205.

[31] M. P. Collins et al., ‘Using uncleanliness to predict future botnet
addresses’, in Proceedings of the 7th ACM SIGCOMM Internet
Measurement Conference, IMC 2007, San Diego, California, USA,
October 24-26, 2007, 2007, pp. 93–104.

[32] L. Krämer et al., ‘Amppot: Monitoring and defending against
amplification ddos attacks’, in Research in Attacks, Intrusions, and
Defenses - 18th International Symposium, RAID 2015, Kyoto, Japan,
November 2-4, 2015, Proceedings, vol. 9404, 2015, pp. 615–636.

[33] Ryu. (2018). Ryu SDN framework, [Online]. Available: https :
//osrg.github.io/ryu/ (visited on 12/10/2018).

[34] (2014). Cisco event response: Network time protocol amplification
distributed denial of service attacks, [Online]. Available: https://www.
cisco.com/c/en/us/about/security-center/event-response/network-time-
protocol-amplification-ddos.html (visited on 23/09/2019).

[35] D. K. Y. Yau et al., ‘Defending against distributed denial-of-service
attacks with max-min fair server-centric router throttles’, IEEE/ACM
Trans. Netw., vol. 13, no. 1, pp. 29–42, 2005.

[36] M. Al-Fares et al., ‘A scalable, commodity data center network
architecture’, in Proceedings of the ACM SIGCOMM 2008 Conference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications, Seattle, WA, USA, August 17-22, 2008,
2008, pp. 63–74.

[37] S. Jouet and D. P. Pezaros, ‘Bpfabric: Data plane programmability for
software defined networks’, in ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, ANCS 2017, Beijing,
China, May 18-19, 2017, 2017, pp. 38–48.

[38] X. N. Nguyen et al., ‘Rules placement problem in openflow networks:
A survey’, IEEE Communications Surveys and Tutorials, vol. 18, no. 2,
pp. 1273–1286, 2016.

[39] R. Pan et al., ‘Approximate fairness through differential dropping’,
Computer Communication Review, vol. 33, no. 2, pp. 23–39, 2003.

[40] S. Ramanathan et al., ‘SENSS against volumetric ddos attacks’,
in Proceedings of the 34th Annual Computer Security Applications
Conference, ACSAC 2018, San Juan, PR, USA, December 03-07, 2018,
2018, pp. 266–277.

[41] R. Braga et al., ‘Lightweight ddos flooding attack detection using
nox/openflow’, in The 35th Annual IEEE Conference on Local Com-

puter Networks, LCN 2010, 10-14 October 2010, Denver, Colorado,
USA, Proceedings, 2010, pp. 408–415.

[42] J. M. Smith and M. Schuchard, ‘Routing around congestion: Defeating
ddos attacks and adverse network conditions via reactive BGP
routing’, in 2018 IEEE Symposium on Security and Privacy, SP 2018,
Proceedings, 21-23 May 2018, San Francisco, California, USA, 2018,
pp. 599–617.

[43] S. Shamshirband et al., ‘Anomaly detection using fuzzy q-learning
algorithm’, Acta Polytechnica Hungarica, vol. 11, no. 8, pp. 5–28,
2014.

[44] A. Servin and D. Kudenko, ‘Multi-agent reinforcement learning for
intrusion detection: A case study and evaluation’, in Multiagent System
Technologies, 6th German Conference, MATES 2008, Kaiserslautern,
Germany, September 23-26, 2008. Proceedings, vol. 5244, 2008,
pp. 159–170.

[45] X. Xu et al., ‘Defending ddos attacks using hidden markov models
and cooperative reinforcement learning’, in Intelligence and Security
Informatics, Pacific Asia Workshop, PAISI 2007, Chengdu, China,
April 11-12, 2007, Proceedings, vol. 4430, 2007, pp. 196–207.

[46] A. Valadarsky et al., ‘Learning to route’, in Proceedings of the 16th
ACM Workshop on Hot Topics in Networks, Palo Alto, CA, USA,
HotNets 2017, November 30 - December 01, 2017, 2017, pp. 185–191.

[47] H. Mao et al., ‘Resource management with deep reinforcement
learning’, in Proceedings of the 15th ACM Workshop on Hot Topics
in Networks, HotNets 2016, Atlanta, GA, USA, November 9-10, 2016,
2016, pp. 50–56.

[48] H. Mao et al., ‘Neural adaptive video streaming with pensieve’, in
Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM 2017, Los Angeles, CA, USA,
August 21-25, 2017, 2017, pp. 197–210.

[49] M. S. Kang et al., ‘Defending against evolving ddos attacks: A case
study using link flooding incidents’, in Security Protocols XXIV -
24th International Workshop, Brno, Czech Republic, April 7-8, 2016,
Revised Selected Papers, vol. 10368, 2016, pp. 47–57.

[50] M. Tokic and G. Palm, ‘Gradient algorithms for explora-
tion/exploitation trade-offs: Global and local variants’, in Artificial
Neural Networks in Pattern Recognition - 5th INNS IAPR TC 3
GIRPR Workshop, ANNPR 2012, Trento, Italy, September 17-19, 2012.
Proceedings, vol. 7477, 2012, pp. 60–71.

Kyle A. Simpson received the MSci degree in
computing science from the University of Glasgow in
2017. He is currently a PhD student within the Net-
worked Systems Research Laboratory at the School
of Computing Science, University of Glasgow. His
research focusses on the use of machine learning and
reinforcement learning techniques in cybersecurity
and network management, with a core interest in
evolving problems and defences.

Simon Rogers is a senior lecturer in the School
of Computing Science, University of Glasgow. He
received his PhD from the department of Engineering
mathematics at the University of Bristol in 2005 and
has been a permanent member of academic staff at
the University of Glasgow since 2009. His work
focuses on the development of machine learning and
statistical methods for the analysis of complex data,
particularly within the field of computational biology.

Dimitrios P. Pezaros (S’01–M’04–SM’14) received
the B.Sc. and Ph.D. degrees in Computer Science
from Lancaster University. He is currently (full)
Professor and the founding director of the Networked
Systems Research Laboratory at the School of Com-
puting Science, University of Glasgow. He is also
a visiting Professor at the University of Athens,
Department of Informatics and Telecommunications.
Professor Pezaros has published widely in the areas
of computer communications, network and service
management, and resilience of future networked

infrastructures, and has received significant funding for his research from
public funding agencies and the industry. He is a Chartered Engineer, and a
senior member of the IEEE and the ACM.

https://arxiv.org/abs/1702.02284
https://arxiv.org/abs/1902.09062
https://www.openvswitch.org/
https://doi.org/10.17487/RFC8312
https://rfc-editor.org/rfc/rfc8312.txt
https://rfc-editor.org/rfc/rfc8312.txt
http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://osrg.github.io/ryu/
https://osrg.github.io/ryu/
https://www.cisco.com/c/en/us/about/security-center/event-response/network-time-protocol-amplification-ddos.html
https://www.cisco.com/c/en/us/about/security-center/event-response/network-time-protocol-amplification-ddos.html
https://www.cisco.com/c/en/us/about/security-center/event-response/network-time-protocol-amplification-ddos.html

	Introduction
	Contributions

	Background and Threat Model
	Distributed Denial of Service
	Reinforcement Learning
	Motivation
	Threat Model

	DDoS Mitigation with Per-flow Reinforcement Learning
	System Design and Assumptions
	Algorithm
	Action rate
	Per-tile updates
	Decision narrowings

	Feature Space
	Reward Function
	Action Space
	Instant control
	Guarded control
	Risks

	Systems Considerations

	Rethinking the State Space
	Traffic Modelling
	Network Design
	TCP (HTTP) Traffic Model
	UDP (Opus/VoIP) Traffic Model
	Attack Traffic Model

	Evaluation
	Single Destination
	Multiple Destinations
	Parameters

	Results
	Congestion-unaware traffic
	Congestion-aware traffic
	Increased Attack Volume
	Computational Cost

	Discussion
	Related Work
	Conclusions and Future Work
	Biographies
	Kyle A. Simpson
	Simon Rogers
	Dimitrios P. Pezaros

