
Revisiting the Classics:
Online RL in the Programmable Dataplane

Kyle A. Simpson [0000-0001-8068-9909], Dimitrios P. Pezaros [0000-0003-0939-378X]

University of Glasgow, Glasgow, Scotland
k.simpson.1@research.gla.ac.uk, Dimitrios.Pezaros@Glasgow.ac.uk

Abstract—Data-driven networking is becoming more capable and
widely researched, partly driven by the efficacy of Deep Reinforce-
ment Learning (DRL) algorithms. Yet the complexity of both DRL
inference and learning force these tasks to be pushed away from the
dataplane to hosts, harming latency-sensitive applications. Online
learning of such policies cannot occur in the dataplane, despite
being useful techniques when problems evolve or are hard to model.

We present OPaL—On Path Learning—the first work to bring
online reinforcement learning to the dataplane. OPaL makes online
learning possible in constrained SmartNIC hardware by returning
to classical RL techniques—avoiding neural networks. Our design
allows weak yet highly parallel SmartNIC NPUs to be competitive
against commodity x86 hosts, despite having fewer features and
slower cores. Compared to hosts, we achieve a 21 × reduction in
99.99th tail inference times to 34 µs, and 9.9 × improvement in
online throughput for real-world policy designs. In-NIC execution
eliminates PCIe transfers, and our asynchronous compute model en-
sures minimal impact on traffic carried by a co-hosted P4 dataplane.
OPaL’s design scales with additional resources at compile-time to
improve upon both decision latency and throughput, and is quickly
reconfigurable at runtime compared to reinstalling device firmware.

I. INTRODUCTION

Automatic network optimisation, control, and defence are at
last becoming commonplace. Adaptive techniques such as
reinforcement learning (RL) have led the charge in data-driven
networking, enhancing automatic traffic optimisation [5, 27],
congestion control [40], adaptive routing [12, 48], resource
management [26], and packet classification [22]. In RL methods,
every change and its effects improve future decisions.

In parallel, P4 [3] and programmable dataplane (PDP)
hardware [17, 30, 52, 55] have inspired explosive growth and
interest in the research community surrounding in-network
computation and offloading. The promise of PDP hardware
is that we can move the entire monitoring and analysis stack
into the dataplane itself, and have it evolve to incorporate new
approaches. The P4 ecosystem already presents novel, openly-
available, and fine-grained traffic measurement techniques [6, 11,
13], and its control plane makes it easy to select which flows or
packets are monitored in a live network. As a result, there has
been keen interest in executing ML in the dataplane [19, 34, 38,
39, 44, 53] to take advantage of flow or per-packet state that
cannot be efficiently processed or extracted at any other location.
These works have shown the value of in-network ML: high-
throughput, low latency response to network changes. While they
can exploit on-device state to provide reactive insight, the missing
piece of the puzzle is learning and updating these ML analyses
online without deferring to another machine in the network.

Training these models online and in-network is an exciting (and
challenging) lacuna in the field that has yet to be addressed.

It is important to make this feasible; offloading to commodity
hosts adds PCIe delays [31, 39], but is required due to the com-
plexity of modern ML. For context, deep neural network training
relies on backpropagation, can take vast amounts of offline simu-
lation [2], and needs many minibatches for stability. These induce
high costs for compute, storage, or dedicated accelerators to over-
come the batching needed to operate at line-rate—while Brain-
Wave [10] can reduce batching (and thus tail latencies) by 32 ×,
inference still takes O(ms) [9]. Moreover, novel DMA techniques
such as GPUDirect [32] halve but do not eliminate such PCIe
transfers. The high latencies caused by steering and inference
harm learning [47] and runtime application performance [40]. If
we can bring online learning to the dataplane, then we can take
advantage of rich, local state while minimising this impact on
the learned policy. This would also make it easy to train and pro-
totype agent designs which can learn as the environment evolves,
or when there is too little data to model and simulate a problem.

In this paper, we enable online in-NIC learning by returning
to classical RL methods. In particular, we focus on tile coding
with algorithms such as Sarsa [43]. While these functions have
lower model capacity, they do not require batches of inputs
to learn in a stable way, negating the memory needed to store
experience replays, and have simple update and inference logic.
In addition, they have shown promise in other network use
cases [25, 37]. Using fixed-point arithmetic, we solve the lack
of floating-point support in PDP hardware and enable new
optimisations. Moreover, the P4 dataplane can offer runtime
control over which flows are monitored. We also design our
solution to operate close to the P4 pipeline to access per-packet
state, but outside of the main packet path to prevent packet stalls.

We show that online RL can be brought to the dataplane
by such methods, where it can act on locally extracted state
and is made more efficient by dataplane hardware. In particular,
we exploit how SmartNIC devices often expose general-purpose
compute [23] to provide path-adjacent, on-chip RL in the
dataplane (fig. 1). As many of these devices have engineering
and development histories which predate P4, general compute
beyond P4’s limits [46] is surprisingly common. By executing
on spare compute units, we prevent packet stalling and offer
quick runtime reconfigurability. This paper contributes:
• OPaL: a general-purpose in-NIC RL agent which scales with

allocated device resources to meet latency or throughput
demands of network control (§III),

https://orcid.org/0000-0001-8068-9909
https://orcid.org/0000-0003-0939-378X
mailto:k.simpson.1@research.gla.ac.uk
mailto:Dimitrios.Pezaros@Glasgow.ac.uk


• ParSa, a wait-free, parallel RL algorithm to accelerate tile
coded policy inference and updates (algorithm 1),

• In-depth evaluation of how OPaL affects carried dataplane
traffic, performs under different policy sizes, and improves on
host deployment with a 15 × latency reduction compared to
commodity hardware (21 × for 99.99th tail latencies) and an
order of magnitude improvement in online throughput (§IV).

• A description of how OPaL would integrate with state-of-
the-art PDP applications to perform fully in-NIC, automated
DDoS mitigation (§V).

II. PRELIMINARIES: TOWARDS IN-NIC RL

A. Programmable hardware capabilities

While P4 [3] has led to great interest in network programmability,
it requires similar behaviour between device classes—this is
encoded by the Programmable Switch Architecture (PSA) [46].
However, many compatible devices long predate these devel-
opments. Many-core SoC-based Netronome [30], NetFPGA
SUME [16, 55], and other SmartNICs [33, 52] allow arbitrary
programs to be specified and executed. Currently, low port-density
devices like these are most likely to have general-purpose com-
pute and high degrees of parallelism [23], as they are designed
for high-performance offloading and middlebox development.

B. Reinforcement Learning

Reinforcement learning (RL) trains an agent to choose an
optimal sequence of actions from any state in pursuit of a
given task [43]. Like most ML methods RL uses gradients to
update the parameters used to approximate a function, aided by
reward measurements from the environment. RL’s MDP structure
allows online learning of a state-action map in a model-free way,
and can step through local minima when needed compared to ML.
In networking, this allows for learning from on-device state or
handling rapidly evolving problems. RL algorithms are agnostic
to the policy approximation used so long as they are differentiable,
and are computationally simple. E.g., Sarsa [43, pp. 217–221]
requires only additions and multiplication to learn a policy online.

C. Tile-coded policy approximation

Returning to classical RL, we examine the linear function approx-
imation of tile coding [43, pp. 217–221]. A policy is represented
by sets of tiles, each covering one or more dimensions of the input
state with several overlapping tilings (offset stepwise to provide
generalisation). A state vector produces a single ‘hit’ in each
tiling, all of which then correspond to a list of action preference
lists—where computing a hit requires division by a known tile
width. Inference is simply summing over all such lists to obtain a
final preference list, selecting the highest-value action. Learning
uses this same list after the next decision is made, adjusting the
value of the previous action using a temporal-difference value
(𝛿𝑡 ) computed by Sarsa. Crucially, this internal representation has
no data dependencies between any tile calculations for an input.

III. DESIGN AND IMPLEMENTATION

We present our design for an in-NIC, task-independent, online
RL system—OPaL (On Path Learning). At a high level, OPaL

Pa
rs

er

In
gr

es
s

D
ep

ar
se

r

Bu
ffe

r
&

Re
pl

ic
at

io
n

Pa
rs

er

Eg
re

ss

D
ep

ar
se

r

O
ut

pu
t

Q
ue

ue

P4 Pipeline

Pktin Pktₒut

Device Cores/Area allocated to P4

Spare Device Cores/Area

P4 Extern Plugins

(Via Actions)

In Ring Out Ring

OPaL RL Policy

Rewards,
State,
Config

(State, Action)

Figure 1. OPaL brings low-latency, online reinforcement learning directly to the
dataplane. SoC- and NetFPGA-based SmartNIC devices expose spare compute—
making in-situ, asynchronous processing and learning possible alongside P4
dataplanes. Classical RL policy methods are the key to making this feasible.

Config

Count

Values
Atomic

Writeback
Policy

Local
CLS

Local
CTM IMEM

{Rewards, State,
Config, Tile Config,

Policy Data}
(State, Action)

In Ring

HashMap<
Key,
(State, Act),
>

HashMap<
Key,
Reward,
>

Out Ring

Controller

Minion

Minion

Minion

Minion

Minion

Minion

Minion

ME 0

Si
gn

al

Minion++

Minion

Minion

Minion

Minion

Minion

Minion

Minion

ME 1

Si
gn

al

NN
Register

NN
Register

EMEM

OPaL
Cores

Other
Cores
/FUs

...

Figure 2. OPaL scales to fit device capacity according to either latency or through-
put needs—CoOp is the optimal online design. A single controller delegates RL
inference and updates to many minions, who complete independent subtasks.

uses auxiliary compute exposed by SmartNIC devices to offer
low-latency online learning, scaling with on-chip resources at
build time. As the allocation of cores/chip area is set ahead
of time by a framework or system administrator, OPaL(-CoOp)
agents enumerate themselves at runtime, during initialisation.

Figure 1 outlines our design on Netronome SmartNIC hard-
ware in pursuit of this goal: unused device resources beyond the
P4-PSA spec are used to drive asynchronous environmental con-
trol. We explain relevant NFP architectural details later in §IV-A.
OPaL communicates with the packet pipeline of a P4 dataplane
via extern plugins using IN (state, configuration) and OUT
(action) messages (fig. 1). Internally, OPaL either has all its cores
act independently, or cooperate to solve each task (fig. 2)—with
different latency-throughput benefits. We open-source our firm-
ware and control programs for the benefit of the community [36].

A. Challenges, solutions, and insights

Network and execution latency: State measurement, policy
inference, and action installation take time, including network
latency and serialisation to MAT-friendly formats [45]. In the
midst of these tasks, system state evolves over time—adding
noise to the state-action mapping being learned, harming
learning and accuracy [47]. To solve this, we co-locate all RL
agent functions on PDP hardware.
Lack of floating-point: PDP hardware, being designed solely



for efficient packet processing, lacks floating-point arithmetic
support even in more general purpose NPU SmartNICs. Luckily,
the embedded ML literature offers many low-precision floating-
point formats [24, 42, 49, 51] and fixed-point representations [35,
54]. The latter set requires only integer arithmetic, which allows
us to express and update policy parameters in-NIC. Thus, we use
quantised fixed-point (𝑄𝑚.𝑛) representations of action values.
Costs of online function approximation: NIC-suitable inference
schemes must still be trained offline, even though their data
formats eschew floating-point—existing PDP ML converts a
pre-trained model into a suitable representation, such as a binary
neural network or chain of MATs. Additionally, DNN training re-
lies on backpropagation, can require memorizing a sizeable replay
buffer for RL, and needs many mini-batches of data for stable
training. To solve this, we employ techniques from more classic
RL literature: tile-coded policies, which have trivial gradients, and
one-step temporal-difference RL algorithms such as Sarsa [43].
Insights: We observe that tile coded inference is a map-reduce
problem, where each tile hit accesses separate data which are
then aggregated together, enabling us to exploit SmartNICs’
parallelism. Crucially, updates can be performed locklessly
without aggregation. For instance, a policy with 𝑚 tiling sets
(each having a set of input dimensions), with 𝑛 overlapping
tilings then creates 𝑚×𝑛 separate tasks. What is key is that
fixed-point numbers also enable the use of atomic arithmetic,
and thus our scheme admits a novel wait-free Sarsa RL
algorithm. Moreover, individual integer operations are cheaper
than floating-point, and we may tweak policy memory cost at
compile time by choosing the desired integer size.

B. System Model

OPaL is a task-independent framework for in-network, online
training and execution of any RL agent design using classical
methods. OPaL is agnostic to the meaning of state vectors
it receives as inputs and the actions it produces, which are
employed by other functional units or the dataplane. However,
in-NIC/in-network execution specifically benefits packet-, flow-,
and network-level control tasks.

OPaL runs on one or more cores of a SmartNIC to convert
fixed-point state measurements from the environment into a
stream of actions using a stored policy. As an example, this
might map flow performance measurements into queue priorities,
or to compute and apply a rate limit to preserve quality of
service. These dedicated cores process requests, compute actions,
and update the policy in real time using reward measures. This
policy can be trained from scratch entirely on the NIC, acting
as a fully online RL agent. An input state vector always induces
an action, and may update the policy using either an included
reward, or one retrieved from memory based on the input state.
This allows for simultaneous control and learning of independent
systems by the same agent (i.e., optimising several flows with
their own reward measures, such as DDoS mitigation in an AS
where each next-hop AS might have their own ‘health’ metric).
To protect traffic throughput and allow effective deployment in
as many environments as possible, OPaL places RL execution
on-chip, but off the main packet path, communicating and

running parallel to the main P4 dataplane. As shown in fig. 1, this
asynchrony allows coexistence with P4 programs, and imposes
minimal impact on carried traffic for both bump-in-the-wire
deployments and at end-points. For instance, the default P4
pipeline on Netronome has several cores go unused (similarly to
spare area on an FPGA design), making this paradigm possible.

C. Action and Update Computation

OPaL applies the insights of Travnik et al. [47] to minimise action
latency; an action is computed, sent out into the environment,
and only then is the policy updated. Using one of the below
strategies, a state vector is tile coded, converted into action
probabilities, and an action is chosen. This is then written out to
the environment as in §III-D. If online learning is enabled, OPaL
then checks an internal hashmap for a prior state-action pair
matching the current trace, and if this is found then the policy is
updated. Updates are computed using single-step semi-gradient
Sarsa [43, pp. 217–221], though modification to support other
single-step methods would be trivial. The new state-action pair is
then written into storage. OPaL can be configured to select values
of the input state vector as keys for state and reward storage.
Two firmware models govern how these tasks are carried out:
CoOp (fig. 2 and algorithm 1) Threads cooperate to process

state vectors, minimising latency. Minion threads have
a fixed list of work items, while a controller thread
sends compute/update commands before awaiting worker
completion. Work items are disjoint, requiring no policy
locks. State vectors are stored for update computation.

Ind (fig. omitted) Separate threads listen for new states, and
each works sequentially. Computing an action list requires
a read lock on the policy. If an update occurs, the core
requests a write lock before updating, limiting online
throughput. Tile lists are stored for update computation.

Each offers a different point of optimisation; Ind maximises
throughput if updates are disabled, while CoOp is designed to
minimise decision latency and needs no locks to update the
policy (increasing online learning throughput). These correspond
to raw inference and learning performance, respectively. Latency
and throughput have different effects on RL agents according to
their target problem. Higher RL throughput is a necessity for per-
flow/packet applications, which can require high decision rates
even after combining state measurements, such as flow control or
DDoS prevention. Equally, lower latency affords an agent finer-
grained control and learning of a problem, able to react sooner
to new information (e.g., in a routing optimisation problem).

D. Agent-Environment Communication

OPaL uses multiple-producer/multiple-consumer (MPMC) chan-
nels to communicate with other elements on the NIC; be they P4
programs on the packet path, or other on-chip analysis modules.
Through these, a system pushes state vectors, reward measures,
and setup packets as inputs, and pulls a stream of state-action
pairs as outputs. This allows decisions to be made asynchronously,
preventing packet stalling. As such, OPaL can receive input from
P4 externs or other, dedicated off-path flow measurement
applications in the same manner. We use platform-specific IPC



(EMEM ring buffers) to achieve this, using a shared freelist
of buffers for packet payloads. Each message takes a median
126–140 ns communication time (local–remote), comparable to
message channels in Rust and Go on commodity hardware.

E. Intra-Agent Communication

Optimising for latency requires meticulous care in how work
is passed out and aggregated. This is truer still when moving
from the moderately fine-grained control of classical RL (∼1 ms)
to its logical limit (tens of µs). Marshalling and data mutexes
incur significant overheads, but on-chip execution and the ParSa
algorithm allow us to sidestep these via lockless atomic aggrega-
tion. Moreover, adjacent cores often have special-purpose shared
registers or share a small fast cache to accelerate communication.
Our implementation exploits the locality of cores in the NFP.
Policy tasks are passed between cores using direct next neighbour
registers, signalling all child threads in response. Such on-chip
signals cost just ∼20 ns per relayed message. This can be factored
into the design of additional async off-path functional units (sim-
ilar to Li et al. [20]) on platforms like NetFPGA. To aggregate,
each core performs atomic adds to a shared preference list and
an acknowledgement counter checked by the master thread,
implementing our wait-free ParSa algorithm (algorithm 1).

F. Reconfigurability

OPaL allows policy design and parameters to be changed at
runtime using at most two control packets. Design changes are
used at the end of learning (moving from online to offline), or
when trying to train a new policy for another task from the
same vantage point. Parameter changes allow an online agent to
become more (or less) adaptive to new data (i.e., after detecting
a changepoint in traffic). This extends to policy data, which may
be imported from a pre-trained model and exported via PCIe to
the host machine. Some aspects must be chosen at compile time;
bit depth, CoOp/Ind, and maximum policy sizes. Choosing a
bit depth of 16 bit or 8 bit halves/quarters policy memory costs,
allowing complex problems to be modelled using more dimen-
sions or fine-grained tiles. In our implementation, configuration
packets are carried over UDP and signalled to the dataplane
using a reserved DSCP value [1, 20]. While this simplifies parser
generation, it also allows for configuration to be received from
only trusted hosts (over the dataplane if needed) via P4 rules. Our
control library and evaluation frameworks are written in Rust.

G. Work Allocation

Due to the lack of dynamic memory allocation on PDP hardware,
and to simplify value lookups, policies cannot be stored sparsely.
Tiling space requirements then scale exponentially with dimen-
sion count, so higher-dimension tilings must be placed in larger,
slower memory regions. As a result policy parameters are split
across such regions, giving different access and compute costs
to different tasks. We use a simple first-fit scheduling algorithm
run in OPaL, placing the largest work item into the least loaded
thread of the least loaded core. Each work item is a separate tiling
over a list of dimensions. The cost of any work item (from its
dimension count and memory location) was empirically measured

Algorithm 1: ParSa—Parallel Sarsa
/* Given message passing

mechanisms scatter and recv, quantised
arithmetic functions 𝑄mul and TileCode, and
omitting schedule/config/precache updates. */

/* cfg.𝛼, cfg.𝛾 are hyperparameters affecting
the significance of each update and the
degree of forward-planning, respectively. */

enum Par { Act(state), Upd(delta, action, state) };
const cfg, policy = /* ... */;
let values: [AtomicI32; cfg.n actions] = {0};
let acks: AtomicI32 = 0;
fn ParSa id, schedule

if id==0 then
forall state pkt in IN do

Ctl(state pkt);

else
while true do

Minion(schedule[id−1], recv());

fn Ctl state
values, acks = {0}, scatter(Par::Act(state));
acquire slot for OUT, copy state into slot;
await acks == cfg.n minions;
let action = argmax(values);
write action into OUT slot, enqueue;
if cfg.online then

let ((l state,
l act, l val), found s) = cfg.lookup state from key(state);

let (reward, found r) = cfg.lookup reward from key(state);
if found s && found r then

let 𝛿𝑡 = reward+𝑄mul(cfg.𝛾, values[action]) − l val;
𝛿𝑡 = 𝑄mul(cfg.𝛼, 𝛿𝑡 );
acks = 0, scatter(Par::Upd(𝛿𝑡 , l act, l state));
await acks == cfg.n minions;

cfg.store state(state, action, values[action]);

fn Minion tasks, msg
switch msg do

case Par::Act(s) do
forall task in tasks do

let hit = TileCode(s, task);
for i in [0..cfg.n actions) do

values[i].atomic add(policy[hit][i]);

case Par::Upd(𝛿, a, s) do
forall task in tasks do

let hit = TileCode(s, task);
policy[hit][a] += 𝛿;

acks.atomic add(1);

offline, and we weigh the total cost per core based on the number
of minion threads available. This weighting specifically accounts
for the controller thread on the first core. Work allocations are
recomputed when policy configuration is installed or changed.
Naturally, for 𝑛 tilings and 𝑚 threads this procedure is O(𝑛log𝑚):
two find/update min operations into binary heaps per tiling,
storing 𝑚/8 and ≤ 8 costs respectively. Although we omit
relevant plots for space, we observe that this offers 1.33 × and
1.11 × speedup over naı̈ve and stride-modulo schedules.

H. Limitations

Direct rule installation into P4 tables from the SmartNIC is not
generally possible. To achieve line-rate performance, platforms
like NFP use accelerated datastructures (e.g., DCFL [45])
computed over the entire rule set. Even through externs,



directly adding new rules is neither feasible nor safe. We instead
suggest that externs or datapath stages which apply RL
actions to packets should maintain a small store of state-action
pairs, and periodically send these back to the controller for
batch installation. Parallelisation also adds per-task overheads
which require a minimum number of workers to improve on
a serial approach—we measure this crossover point in §IV-D

IV. EVALUATION

We investigate the performance of OPaL compared to classical RL
techniques executed on commodity hosts, with CoOp offering a
15–21 × speedup in median–99.99th state-action latency and 9.9 ×
greater online learning throughput. Crucially, in-NIC execution of-
fers tight tail latency bounds compared to host-based approaches.
We report on how OPaL scales as additional device resources are
added, noting that both in-NIC designs outperform commodity
hosts using just one core in latency and online throughput.
Furthermore, Ind provides higher per-core offline throughput than
host-based approaches, even though our measured hosts exhibit
higher clock speeds. Finally, we show that OPaL has minimal
impact on dataplane cross-traffic carried by its parent device.

A. Netronome Platform Fundamentals

NFPs achieve scalable packet processing through parallelism. The
chip is composed of microengines (MEs), grouped into islands
of 4 or 12 MEs. Each ME has 4–8 contexts (threads) which
share a code store. Beyond registers, the platform has an explicit
memory hierarchy in size and access cost: LMEM (ME) <

CLS (Island)<CTM< IMEM (Chip)<EMEM.

B. Experimental Setup

Testing machines were as follows, with 32 GiB RAM:
MidServer Intel Xeon Bronze 3204 (6×1.9 GHz),
HighServer Intel Xeon Silver 4208 (8×2.1 GHz),
Collector Intel Core i7-6700K (4×4.2 GHz).
OPaL was evaluated on server blades (Mid/HighServer), each
hosting a single Netronome Agilio LX 40GbE (NFP-6480,
1.2 GHz). These servers ran Ubuntu 18.04.5 LTS (4.15.0-140-
generic). We additionally use a more powerful consumer-grade
machine (Collector) for estimating host performance when
offloaded to a network function, running Ubuntu 18.04.4 LTS
(4.15.0-96-generic). Host execution occurs on the CPU using a
numpy-based Sarsa implementation. Control programs were built
using rustc 1.52.1. We run OPaL on a 4-ME island of the NFP-
6480 (32 contexts) using 32 bit, 16 bit and 8 bit arithmetic. This
is the largest cluster of cores which is not in use by a P4 pipeline.
All OPaL timing measurements were repeated over 10 000 state
packets (preceded by 1000 warmup packets), retrieving item
processing times over PCIe from which throughput was derived.
Host throughput and latency measures were observed over 10
trials of 10 s (with 5 s warmup/cooldown times). We differ this
from the NFP as hosts need to run numpy-based agents in
parallel as separate processes; this also allows us to investigate
the effects of oversubscription. Policy sizes are set to those of a
real-world DDoS control application [37]: 20-dim state vectors,
a bias tile and 16 full tiling sets (7×1-dim, 8×2-dim, 1×4-dim),

8 tilings per set, 6 tiles per dimension, and 10 actions. For
context, such input would contain per-flow state (e.g., IATs,
rates) combined with the last action taken (2-dim tilings) and
loads along the ingress-egress path (4-dim). In CoOp, this
creates 129 tasks across 31 workers. We choose a larger action
count to investigate the performance of more complex agents.

C. Experiments

Inference and learning: We compare how long it takes for OPaL
to compute actions and policy updates, and report on its through-
put against a floating point (numpy-based) implementation of
Sarsa on commodity hosts. This lets us demonstrate the perform-
ance differences between Ind and CoOp, particularly in how
Ind’s (and hosts’) required policy locks impact throughput. We
compare online learning performance with offline in these cases.
Online performance marks the number of decisions that can be
made per second (and associated latency) when training a policy.
Offline performance is crucial for pushing a trained, known-good
policy to agents with an expected higher raw decision throughput.
State-action latency is a shared property of both cases; the main
impact on throughput arises from the update step.

We then vary the amount of worker threads to show how
OPaL scales to fit available compute resources on a device. This
is important for planning in an intelligent dataplane—particularly
when cohabiting with other dataplane programs—and has
effects on ahead-of-time work scheduling which we examine
later. This also demonstrates the number of cores needed to
achieve a given latency or throughput bound on a real-world
policy. Moreover, to demonstrate how these costs vary in larger
policies, we vary the total number of dimensions in each tiling.
End-to-end RL latency: We compare the key RL latencies we
discuss in §III-A across 3 scenarios: completely in-NIC (OPaL),
offloading RL decisions to a SmartNIC’s controller machine,
and offloading to a virtual Network Function (vNF).
Coexistence with the dataplane: While varying the rate of RL
updates performed by CoOp (32 bit) from 0–16 000 actions/s, we
measure packet loss and latencies of cross traffic carried over a
co-hosted P4 pipeline. This allows us to quantify whether on-chip
(out-of-path) execution impacts ordinary dataplane behaviour
indirectly: e.g., EMEM cache evictions or hidden resource con-
tention. We test an NFP in MidServer using Pktgen-DPDK [50],
connecting HighServer as the traffic source over a 40 Gbit/s cable.
We perform loss tests using 7/1 Tx/Rx queues at 100 % send rate
for 10 bursts of 30 s, and perform latency tests using 1/1 Tx/Rx
queue at 10 % send rate for 200 000 measurements (sampling at
2000 Hz for 10×10 s). This maximises throughput in the former
case, relying on NIC counters for loss detection. The latter
minimises host resource contention to observe accurate latencies,
observe enough samples to detect subtle (aggregate) latency
effects, and eliminate host receive drops. DPDK was setup using
4×1 GiB hugepages. Sent traffic comprised fixed-size 64–1518 B
packets [4]. CPU clock scaling was disabled on HighServer.
Resource requirements: Using the policy size defined above,
we investigate how the memory requirements imposed by OPaL
vary with the number of dedicated MEs, over and above a base
P4 forwarding plane. We report resource use for 32 bit Ind and



Table I
LATENCIES AND COMPUTATION TIMES FOR OPAL VERSUS COMMODITY HOSTS.
ON-DEVICE EXECUTION IS CRUCIAL IN LOWERING LATENCIES and REDUCING

TAIL LATENCIES. LOWER IS BETTER, WITH THE BEST MARKED in bold.

Datatype Machine/FW State-Action Latency (µs) State-Update Time (µs)

Median 99th 99.99th Median 99th 99.99th

Float Collector 515.94 606.06 725.03 606.06 636.82 833.99
MidServer 1069.07 1125.1 1508.0 1260.04 1605.99 1719.864

Int32 OPaL-Ind 185.133 185.533 186.213 230.840 231.347 232.227
OPaL-CoOp 34.347 34.520 34.573 62.000 62.440 63.120

Table II
ACTION AND UPDATE THROUGHPUTS FOR OPAL VERSUS COMMODITY HOSTS.
MOST DESIGNS CANNOT SCALE ONLINE PERFORMANCE WITH ADDITIONAL

CORES. HIGHER IS BETTER, WITH THE BEST MARKED in bold.

Datatype Machine/FW Workers Throughput (k actions/s) Throughput/core (k actions/s)

Offline Online Offline Online

Float Collector 4 7.673(49) 1.627(31) 1.918(12) —
MidServer 6 5.584(30) 0.791(12) 0.931(5) —

Int32 OPaL-Ind 32 172.875(229) 4.333(5) 5.402(7) —
OPaL-CoOp 32 29.166(173) 16.141(73) 0.911(5) 0.504(2)

CoOp agents, with hash tables sized to 4096 state-action pairs and
16 separate reward values. This captures the relative cardinality
of network RL traces to rewards; many input flows will map
to one or few reward values (i.e., DDoS attack size estimation
per egress-AS, queue occupancy per output port in AQM).
Deployability: By timing agent setup and compile times, we
describe the runtime costs needed for an administrator to
repurpose an installed agent in a live network.

D. Results and Discussion

Inference and learning: Table I shows how OPaL compares
in latency with a numpy-based RL policy.1 When using 4 MEs
of the NFP-6480, CoOp achieves sub-35 µs median latency,
with 99th and 99.99th percentile latencies less than 1 µs worse
(15 × and 21 × speedups over Collector). Importantly, Ind
achieves lower median latencies (2.79 ×) and update times
(2.63 ×) than a dedicated Collector using only a single core
or functional unit. Crucially, in-NIC execution gives far tighter
bounds on tail latency compared to host offloading. 99.99th

percentile state-action latencies exceed the median by 0.58 %
and 0.66 % for Ind and CoOp, while host tail latencies are at
least 40.53 % greater. We show their cumulative distributions
in detail (fig. 5), noting how just one additional CPU-intensive
task—potentially automated system updates or another traffic
processing task—impacts tail latencies further (Float(Over)).

Table II compares OPaL’s throughput against hosts. We set
the worker count on host machines equal to their number of
physical cores—moving beyond this would hamper tail latencies
by an order of magnitude. To make the comparison fair in the
context of many-core CPU environments, we include per-core
throughput. Ind achieves 2.82 × higher offline throughput per
core than commodity Collector, in spite of the NFP-6480
having a considerably slower clock speed (0.29 ×). Due to
the abundance of such weaker chips, in-NIC RL is able to
deliver much higher throughput. As anticipated, CoOp is key
in achieving serviceable throughput in an online learning agent,
9.9 × that of a dedicated collector machine.

1For brevity, we omit integer numpy results—against a float implementation,
median action latencies are 14.6 % worse, with 7.9 % longer update times.

50100150200250300350400450500550600

0 5 10 15 20 25 30 35Po
lic
y
U
pd

at
e
T
im

e
(µ
s)

Worker threads allocated

CoOp (8 bit)
CoOp (16 bit)

CoOp (32 bit)
Ind (8 bit)

Ind (16 bit)
Ind (32 bit)

Figure 3. CoOp’s online learning performance improves with additional cores.
This requires 8 workers to offer greater online throughput than single-threaded
in-NIC RL. Sharper performance increases occur when a new physical core
is added (7–8) or the scheduler works around a bottleneck (13–14).

050
100150200250

0 5 10 15 20 25 30Po
lic
y
U
pd

at
e
T
im

e
(µ
s)

Dimensions in Tiling

CoOp (8 bit)
CoOp (16 bit)

CoOp (32 bit)
Ind (8 bit)

Ind (16 bit)
Ind (32 bit)

Figure 4. CoOp processes updates faster than Ind—thus has higher online
performance—on almost all policy sizes. Lower bit depths are effective on
simple policies. State-action latency scales similarly.

00.2
0.40.6
0.81

33 33.5 34 34.5 35 35.5 36 36.5C
um

ul
at
iv
e
Fr
eq
ue
nc
y

State-Action Latency (µs)

8 bit 16 bit 32 bit

(a) OPaL’s CoOp design achieves
consistent, tight latency bounds.

00.2
0.40.6
0.81

0 200 400 600 800 1000C
um

ul
at
iv
e
Fr
eq
ue
nc
y

State-Action Latency (µs)

CoOp (32 bit)
Ind (32 bit)

Float
Float (Over)

(b) Tail latencies suffer in hosts—
particularly when oversubscribed.

Figure 5. Cumulative state-action latency plots for OPaL versus hosts.

By limiting workers, we show how CoOp’s policy update time
(thus online throughput—fig. 3) scales with available cores. While
CoOp always outperforms hosts, we observe there are two distinct
crossover points which must be met to overcome Ind; 8 workers
for online throughput, and 3 for latency (plot omitted). Some
artefacts of our environment and design are visible; the addition
of new physical cores is more significant than contexts, and some
schedule bottlenecks are visible. Most importantly, CoOp’s re-
source demand is tunable at compile time to meet the training rate
or action latency required by a task. Figure 4 shows how policy
complexity affects update cost, scaling from a bias tile up to the
full DDoS policy size. CoOp always produces an action in less
time than Ind, but requires at least one state-based tile to excel in
online learning. We note that this is a trivial case, as using only a
bias tile returns a single preference list regardless of input state.

8 bit and 16 bit agents underperform against 32 bit, except for
smaller policies (zoomed portion of fig. 4)—even though OPaL is
optimised to access policy data in batches. As the native register



width on the NFP is 32 bit, the compiler emits extra instructions
around ALU operations to correctly load and store values. This ex-
plains what we see in larger policies, as higher dimension tilings
require more arithmetic, and most of the I/O comes after comput-
ing each hit tile, causing ALU use to dominate. This also explains
why the crossover point differs for online (fig. 4, 10 dims) and off-
line (plot omitted, 3 dims) agents: state management falls into the
serial portion of the online algorithm. To overcome this, we invest-
igated bit-stuffing values into a single word during writeback (as
the platform offers both 32 bit and 64 bit atomic addition). This is
analogous to SIMD through use of padding bits, but we found that
manipulating tiles into the correct format added 10 % overhead.
End-to-end RL latency: To determine state-action latencies,
we take inference times from table I for host and in-NIC
processing, and add the packet RTT to the inference site:

In-NIC. As described in §III-D, EMEM rings have a median
one-way delay cross-island of 140 ns, giving a median
34.63 µs end-to-end inference latency.

Dedicated Collector. Employing DPDK, such hosts add
one-way PCIe packet delays of 0.9–2.3 µs [31]. A UDP
packet carrying 20 elements of state in OPaL is 128 B,
so costs 1 µs to forward, and the reply state-action pair
invokes a slightly higher cost. This gives an end-to-end
inference latency of 517.9 µs.

vNF Offload. Cziva and Pezaros [7] show that more lightweight
vNF frameworks like GNF [7] and ClickOS [28] add
45–55 µs additional RTT latency above PCIe costs. This
gives an end-to-end inference latency of 572.9 µs.

Thus, in-NIC RL offers 14.96 × and 16.54 × lower latency over
collector and vNF deployments respectively. We contrast these
against deep RL for network tasks, which can take 3 ms [40]—2
orders of magnitude above OPaL with identically sized inputs.
Coexistence with the dataplane: Our setup met 40 Gbit/s for
packet sizes ≥256 B. For frames of 64 B and 128 B, input traffic
rates were 17.4 Gbit/s and 32.9 Gbit/s respectively (33.9 Mpps
and 32.2 Mpps). Passing this traffic over the NFP device running
OPaL, no packet losses occurred at any rate of RL actions. We
show the effect of RL workloads on the RTTs of cross traffic
via fig. 6. As observed RTTs were not normally distributed, we
employed a one-tailed Mann-Whitney U test, marking population
increases in latency (𝑝 <0.05) with a “+”. Statistically significant
increases concentrate around smaller packet sizes; all (bar one)
of these affected 99th percentile latencies by under 0.38 %
(≤78 ns). This slight effect can be explained by increased
pressure on the NFP’s Command Push-Pull (CPP) bus, which
handles cross-island accesses to memory and other resources.
OPaL uses the CPP bus through its IN/OUT EMEM rings and
last-tier policy accesses. This also explains the sensitivity of
256 B packets to OPaL—the NFP segments packets, storing
metadata (e.g., MAC prepend) and the first bytes of a packet
in a 256 B CTM block and parking their payloads in EMEM.
256 B packets overshoot this due to metadata, causing small
I/O accesses at a high rate for packets sized around this cutoff.
An anomaly is 128 B packets at 3000 RL updates per second,
causing a 222 ns (1.18 %) increase. We believe the inbound

024
6810
121416

64 128 256 512 102412801518RL
Re

qu
es
tr
at
e
(k

up
da
te
s/
s)

Packet Size (B)

+ +
+

+ +
+

+ +
+ +

+ +

+ +
+
+ +
+ +

−400−300−200−1000100
200300

Pa
ck
et

La
te
nc
y
D
ev
ia
tio

n
(n
s)

(a) 99th %tile cross-traffic RTT changes.

0510
152025
3035

15 16 17 18 19 20 21Fr
eq
ue
nc
y
(k
)

Packet Latency (µs)

0k/s 3k/s

(b) RTT distribution for 128 B
packets at 0 and 3000 actions/s.

Figure 6. Effects on tail latency of cross-traffic caused by off-path RL compute.
Statistically significant increases in population latency are concentrated on
smaller packet sizes, and are typically sub-78 ns.

Table III
NFP MEMORY USE DUE TO OPAL USING 1 AND 4 MES (32 bit). CLS AND

CTM ARE SHARED BETWEEN ALL PROGRAMS ON THE SAME ISLAND, EMEM
AND IMEM ARE SHARED BETWEEN ALL PROGRAMS ON A NIC.

Firmware EMEM EMEM Cache IMEM i5.CLS i5.CTM
MiB % KiB % KiB % KiB % KiB %

Base P4 6776.67 88.24 268.52 2.91 858.28 10.48 0.00 0.00 0.00 0.00
Ind(1) 6780.21 88.28 2541.08 27.57 1263.28 15.42 24.75 38.67 94.25 36.82
Ind(4) 6780.22 88.28 2545.33 27.62 1263.28 15.42 51.18 79.97 107.00 41.80

CoOp(1) 6779.12 88.27 1773.59 19.24 1263.28 15.42 22.41 35.01 90.00 35.16
CoOp(4) 6779.12 88.27 1769.84 19.20 1263.28 15.42 52.16 81.49 90.00 35.16

request rate is weakly synchronised with traffic, causing bursty
accesses to the CPP bus. We expect that FPGA designs can avoid
this by having dedicated IN/OUT mechanisms for an OPaL agent.
Resource requirements: Table III shows how OPaL consumes
memory as it scales to additional cores, compared with a simple
P4 forwarding application. As one program is installed per ME,
these results represent the minimum and maximum resource
use on a single island (i.e., without replacing P4 workers). We
observe negligible costs on shared EMEM (∼4 MiB) from state
and reward hash tables. The most significant costs arise due to
policy data (405 KiB shared IMEM, 90 KiB local CTM, 15 KiB
local CLS), which can be halved or quartered using 16 bit and
8 bit quantisation. This is a high upfront cost on per-island
resources (CLS/CTM)—OPaL leaves resources for other off-path
dataplane applications, but is fairest from 3 cores onwards.
Deployability: Setup of OPaL uses two packet types: setup,
which contains policy shape and learning parameters, and tiling,
which provides a list of indices for tiling sets. Handling these
packets took a mean 27.03 µs and 16.69 µs respectively on Ind,
allowing an agent to be swapped from online to offline painlessly,
i.e., after convergence. CoOp exhibits similar costs, however the
scheduler causes policy structure changes to take 422.63 µs for
a max-size policy—we found that this scales as described earlier
(O(𝑛log𝑚)). Policy data changes require no additional work,
resolving purely to memcpys. Firmware installation (i.e., chan-
ging Ind to CoOp or bit depth) took a mean 38.83 s. Compiling
and linking OPaL and the P4 toolchain took 35 s, while changing
only OPaL parameters required 25 s. These results show that
OPaL can be easily adapted by network administrators once in
place, and illustrates an advantage of SoC-based SmartNICs.

V. POTENTIAL INTEGRATIONS

A. In-Network DDoS Defence

Classical RL has seen recent use in real-time, adaptive DDoS
mitigation [37]. Simpson et al.’s Guarded agent design uses a
mixture of network and per-flow state to monitor how flows re-



spond to bandwidth changes and packet loss. Actions move flows
up or down in punishment levels. To implement and improve
upon this work using OPaL, we would place its RL agents on
SmartNICs at AS edge nodes—a bump-in-the-wire deployment.
Inputs: Low-latency, pure-P4 solutions to extract and record
per-flow TCP state directly in the dataplane such as Dapper [11]
and Sonata [13] are well-studied. We propose placing such
monitors in the P4 dataplane, existing on-chip alongside OPaL.
The required global state (load measures from network paths)
must still come from elsewhere in the network; this is now the
element at highest risk of becoming stale, but the least likely
to vary significantly in response to individual actions. We posit
that INDDoS [8], which estimates DDoS victim cardinality,
would be an effective reward function source.
Integrating OPaL: Before flow monitoring, this solution polls
OPaL’s OUT Ring—these actions would be placed into a local
hash table and exported to the controller to be batch-inserted as
P4 rules. Packet ingress timestamps would be used to emulate the
TRS scheduler used by anti-DDoS agents for rate-controlled work,
selecting state vectors for OPaL. The tight bounds on OPaL’s
execution time make it easy to calculate the maximum number
of decisions which can be made per deadline. Reward values
would then be separately inserted by a modified INDDoS table.

It can take at least one RTT for meaningful changes to occur
in a flow’s behaviour (O(ms) in a transit AS/ISP). Accordingly,
this use case benefits most from an increase in throughput using
Ind. Higher throughput means that network flows are more likely
to be judged in every timestep—changes in flow behaviour are
more likely to be acted on and learned from. Flows exceeding
maximum throughput simply cause it take longer in expectation
for a flow to be reassessed. As shown in §IV, OPaL far exceeds
the throughput of host offloading, making in-NIC execution
ideal. The control plane can then dynamically narrow down
or expand the set of flows to be monitored.

B. Network Deployment Considerations

In a network, a subset of OPaL nodes could be CoOp agents,
training online, while most other nodes run Ind to meet
throughput guarantees. The control plane would then combine
and distribute these improved policies between offline agents.
This can be taken further, using policy deltas to enable transfer
learning for more complex models such as neural networks.

VI. RELATED WORK

In-network ML: Taurus [44] proposes efficient line-rate infer-
ence using a configurable grid of map-reduce units in the packet
pipeline (implementing e.g., LSTMs and SVMs). On CGRA
hardware, they achieve sub-µs extra latency. IIsy [53] shows how
classical ML inference (SVMs, Naı̈ve Bayes, etc.) can be conver-
ted into match-action tables compatible with any P4 deployment.
They achieve mean 2.62 µs extra latency on NetFPGA.

A recent line of research is the use of Binarised Neural
Networks (BNNs) [14, 18, 29] for line-rate packet classification.
BaNaNa SPLIT [34, 38] shows this as an offload mechanism
for fully-connected layers. In-network packet tagging and classi-
fication by pre-trained BNNs is shown by N3IC [39], achieving

packet inference in 45 µs on the NFP, and 0.3 µs on NetFPGA
for 256 bit inputs. Comparatively, OPaL-CoOp can process an
identically-sized input in a median 13.83 µs. Our work handles
larger inputs (640 bit) at lower latencies (34 µs), and offers online
learning. We expect that a NetFPGA implementation of OPaL
would enjoy a similar factor of speedup. Langlet [19] has shown
the viability of NN inference using 64 bit quantisation on the
NFP, using in-path compute rather than our asynchronous model.
Inference latency on small networks can be as high as 500 µs on
line rate traffic, emphasising the value of path-adjacent compute.

We stress that none of these approaches (or that we have
seen) tackle online learning and control in-network—we believe
OPaL has broken new ground in this regard.
In-network ML acceleration: Optimisation of distributed neural
network training is an area where in-network compute has
been key for general NNs [21] and RL-specific procedures [20],
using NetFPGAs to implement floating point adders. In-NIC
processing allows gradient packets to be aggregated in-network,
overcoming incast behaviour and host bottlenecks.
RL for network control: NeuroCuts [22] uses deep RL to
train an agent which can build efficient decision tree packet
classifiers for use in constrained environments (e.g., network
hardware). Deep RL techniques have been used for QUIC
congestion control optimisation [40]. A key facet of this work
is the need for asynchronous RL in networks, where pauses
for DNN-based inference can significantly harm throughput.
PDP design for asynchronous compute: PANIC [41] places a
routing fabric between distinct packet/data processing elements
in a SmartNIC. Such designs would enable novel asynchronous
compute in SmartNICs and switches, for instance offering
consistent and easy to use communication between workers
versus hard-coded ME relationships. Event-driven versions of P4
have been suggested [15]. Timer events and device state changes
would empower in-network RL use cases, signalling timesteps for
RL agents or new, effective, fine-grained sources of input state.

VII. CONCLUSION

We have presented OPaL, bringing online RL to the dataplane.
In-NIC use of classical RL algorithms makes this possible, and
enables significant reductions in median–99.99th inference times
and order of magnitude improvements in online learning through-
put, with minimal impact on dataplane cross-traffic. In future, we
aim to examine the performance of individual applications driven
by OPaL—both classical and deep RL-based—and how a Net-
FPGA implementation can offer further latency and throughput
improvements. A promising avenue here would be to investigate
constant transfer learning between online OPaL agents and
high-throughput offline function approximators such as BNNs.
Acknowledgements: The authors would like to thank Rhys
Simpson for his comments and discussions on the soundness of
SIMD-like optimisations. They would additionally like to thank
Stefanos Sagkriotis, Mircea Iordache-Şică, and Haruna Adoga for
their comments and feedback. We thank the anonymous reviewers
of SOSR’21 and NOMS’22 for their comments. This work was
supported in part by the Engineering and Physical Sciences
Research Council [grants EP/N509668/1, EP/N033957/1].



REFERENCES

[1] Fred Baker, David L. Black, Kathleen Nichols and Steven
L. Blake. Definition of the Differentiated Services Field
(DS Field) in the IPv4 and IPv6 Headers. RFC 2474.
Dec. 1998. DOI: 10.17487/RFC2474. URL: https://rfc-
editor.org/rfc/rfc2474.txt.

[2] Christopher Berner, Greg Brockman, Brooke Chan, Vicki
Cheung, Przemyslaw Debiak, Christy Dennison, David
Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse,
Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub
Pachocki, Michael Petrov, Henrique Pondé de Oliveira
Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter,
Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang,
Filip Wolski and Susan Zhang. ‘Dota 2 with Large Scale
Deep Reinforcement Learning’. In: CoRR abs/1912.06680
(2019). arXiv: 1912.06680.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard,
Nick McKeown, Jennifer Rexford, Cole Schlesinger,
Dan Talayco, Amin Vahdat, George Varghese and David
Walker. ‘P4: programming protocol-independent packet
processors’. In: Computer Communication Review 44.3
(2014), pp. 87–95. DOI: 10.1145/2656877.2656890.

[4] Scott Bradner and Jim McQuaid. Benchmarking Meth-
odology for Network Interconnect Devices. RFC 2544.
Mar. 1999. DOI: 10.17487/RFC2544. URL: https://rfc-
editor.org/rfc/rfc2544.txt.

[5] Li Chen, Justinas Lingys, Kai Chen and Feng Liu. ‘AuTO:
scaling deep reinforcement learning for datacenter-scale
automatic traffic optimization’. In: Proceedings of the
2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM 2018, Budapest,
Hungary, August 20-25, 2018. Ed. by Sergey Gorinsky
and János Tapolcai. ACM, 2018, pp. 191–205. DOI: 10.
1145/3230543.3230551.

[6] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer
Rexford and Ori Rottenstreich. ‘Catching the Microburst
Culprits with Snappy’. In: Proceedings of the Afternoon
Workshop on Self-Driving Networks, SelfDN@SIGCOMM
2018, Budapest, Hungary, August 24, 2018. ACM, 2018,
pp. 22–28. DOI: 10.1145/3229584.3229586.

[7] Richard Cziva and Dimitrios P. Pezaros. ‘Container
Network Functions: Bringing NFV to the Network Edge’.
In: IEEE Commun. Mag. 55.6 (2017), pp. 24–31. DOI:
10.1109/MCOM.2017.1601039.

[8] Damu Ding, Marco Savi, Federico Pederzolli, Mauro
Campanella and Domenico Siracusa. ‘In-Network Volu-
metric DDoS Victim Identification Using Programmable
Commodity Switches’. In: IEEE Trans. Network and
Service Management (2021). Early access.

[9] Javier Duarte, Philip Harris, Scott Hauck, Burt Holzman,
Shih-Chieh Hsu, Sergo Jindariani, Suffian Khan, Benjamin
Kreis, Brian Lee, Mia Liu, Vladimir Lončar, Jennifer
Ngadiuba, Kevin Pedro, Brandon Perez, Maurizio Pierini,
Dylan Rankin, Nhan Tran, Matthew Trahms, Aristeidis
Tsaris, Colin Versteeg, Ted W. Way, Dustin Werran

and Zhenbin Wu. ‘FPGA-Accelerated Machine Learning
Inference as a Service for Particle Physics Computing’. In:
Computing and Software for Big Science 3.1 (Oct. 2019),
p. 13. ISSN: 2510-2044. DOI: 10.1007/s41781-019-0027-2.

[10] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael,
Todd Massengill, Ming Liu, Daniel Lo, Shlomi Alkalay,
Michael Haselman, Logan Adams, Mahdi Ghandi, Stephen
Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa
Woods, Sitaram Lanka, Steven K. Reinhardt, Adrian M.
Caulfield, Eric S. Chung and Doug Burger. ‘A Config-
urable Cloud-Scale DNN Processor for Real-Time AI’.
In: 45th ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA 2018, Los Angeles, CA, USA,
June 1-6, 2018. Ed. by Murali Annavaram, Timothy Mark
Pinkston and Babak Falsafi. IEEE Computer Society, 2018,
pp. 1–14. DOI: 10.1109/ISCA.2018.00012.

[11] Mojgan Ghasemi, Theophilus Benson and Jennifer Rex-
ford. ‘Dapper: Data Plane Performance Diagnosis of TCP’.
In: Proceedings of the Symposium on SDN Research, SOSR
2017, Santa Clara, CA, USA, April 3-4, 2017. ACM, 2017,
pp. 61–74. DOI: 10.1145/3050220.3050228.

[12] Tomer Gilad, Neta Rozen Schiff, Philip Brighten Godfrey,
Costin Raiciu and Michael Schapira. ‘MPCC: online
learning multipath transport’. In: CoNEXT ’20: The 16th
International Conference on emerging Networking EX-
periments and Technologies, Barcelona, Spain, December,
2020. Ed. by Dongsu Han and Anja Feldmann. ACM,
2020, pp. 121–135. DOI: 10.1145/3386367.3433030.

[13] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster,
Jennifer Rexford and Walter Willinger. ‘Sonata: query-
driven streaming network telemetry’. In: Proceedings of
the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM 2018, Budapest,
Hungary, August 20-25, 2018. Ed. by Sergey Gorinsky
and János Tapolcai. ACM, 2018, pp. 357–371. DOI: 10.
1145/3230543.3230555.

[14] Itay Hubara, Matthieu Courbariaux, Daniel Soudry,
Ran El-Yaniv and Yoshua Bengio. ‘Binarized Neural
Networks’. In: Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information
Processing Systems 2016, December 5-10, 2016, Bar-
celona, Spain. Ed. by Daniel D. Lee, Masashi Sugiyama,
Ulrike von Luxburg, Isabelle Guyon and Roman Garnett.
2016, pp. 4107–4115.

[15] Stephen Ibanez, Gianni Antichi, Gordon J. Brebner and
Nick McKeown. ‘Event-Driven Packet Processing’. In:
Proceedings of the 18th ACM Workshop on Hot Topics in
Networks, HotNets 2019, Princeton, NJ, USA, November
13-15, 2019. ACM, 2019, pp. 133–140. ISBN: 978-1-4503-
7020-2. DOI: 10.1145/3365609.3365848.

[16] Stephen Ibanez, Gordon J. Brebner, Nick McKeown
and Noa Zilberman. ‘The P4-¿NetFPGA Workflow for
Line-Rate Packet Processing’. In: Proceedings of the
2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA 2019, Seaside, CA,
USA, February 24-26, 2019. Ed. by Kia Bazargan and

https://doi.org/10.17487/RFC2474
https://rfc-editor.org/rfc/rfc2474.txt
https://rfc-editor.org/rfc/rfc2474.txt
https://arxiv.org/abs/1912.06680
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.17487/RFC2544
https://rfc-editor.org/rfc/rfc2544.txt
https://rfc-editor.org/rfc/rfc2544.txt
https://doi.org/10.1145/3230543.3230551
https://doi.org/10.1145/3230543.3230551
https://doi.org/10.1145/3229584.3229586
https://doi.org/10.1109/MCOM.2017.1601039
https://doi.org/10.1007/s41781-019-0027-2
https://doi.org/10.1109/ISCA.2018.00012
https://doi.org/10.1145/3050220.3050228
https://doi.org/10.1145/3386367.3433030
https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/3365609.3365848


Stephen Neuendorffer. ACM, 2019, pp. 1–9. ISBN: 978-
1-4503-6137-8. DOI: 10.1145/3289602.3293924.

[17] Intel. Explore the Power of Intel Programmable Ethernet
Switch Products. Oct. 2020. URL: https://www.intel.com/
content/www/us/en/products/network-io/programmable-
ethernet-switch.html (visited on 01/02/2021).

[18] Minje Kim and Paris Smaragdis. ‘Bitwise Neural Net-
works’. In: CoRR abs/1601.06071 (2016). arXiv: 1601.
06071.

[19] Jonatan Langlet. ‘Towards Machine Learning Inference in
the Data Plane’. Bachelor’s Thesis. Karlstad University,
June 2019. URL: http://urn.kb.se/resolve?urn=urn:nbn:se:
kau:diva-72875 (visited on 04/05/2021).

[20] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen,
Alexander G. Schwing and Jian Huang. ‘Accelerating dis-
tributed reinforcement learning with in-switch computing’.
In: Proceedings of the 46th International Symposium
on Computer Architecture, ISCA 2019, Phoenix, AZ,
USA, June 22-26, 2019. Ed. by Srilatha Bobbie Manne,
Hillery C. Hunter and Erik R. Altman. ACM, 2019,
pp. 279–291. ISBN: 978-1-4503-6669-4. DOI: 10.1145/
3307650.3322259.

[21] Youjie Li, Jongse Park, Mohammad Alian, Yifan Yuan,
Zheng Qu, Peitian Pan, Ren Wang, Alexander G. Schwing,
Hadi Esmaeilzadeh and Nam Sung Kim. ‘A Network-
Centric Hardware/Algorithm Co-Design to Accelerate
Distributed Training of Deep Neural Networks’. In:
51st Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2018, Fukuoka, Japan, October
20-24, 2018. IEEE Computer Society, 2018, pp. 175–188.
ISBN: 978-1-5386-6240-3. DOI: 10.1109/MICRO.2018.
00023.

[22] Eric Liang, Hang Zhu, Xin Jin and Ion Stoica. ‘Neural
packet classification’. In: Proceedings of the ACM Special
Interest Group on Data Communication, SIGCOMM 2019,
Beijing, China, August 19-23, 2019. Ed. by Jianping Wu
and Wendy Hall. ACM, 2019, pp. 256–269. ISBN: 978-1-
4503-5956-6. DOI: 10.1145/3341302.3342221.

[23] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krish-
namurthy, Simon Peter and Karan Gupta. ‘Offloading
distributed applications onto smartNICs using iPipe’. In:
Proceedings of the ACM Special Interest Group on Data
Communication, SIGCOMM 2019, Beijing, China, August
19-23, 2019. Ed. by Jianping Wu and Wendy Hall. ACM,
2019, pp. 318–333. DOI: 10.1145/3341302.3342079.

[24] Stefan Mach, Fabian Schuiki, Florian Zaruba and Luca
Benini. ‘FPnew: An Open-Source Multi-Format Floating-
Point Unit Architecture for Energy-Proportional Trans-
precision Computing’. In: CoRR abs/2007.01530 (2020).
arXiv: 2007.01530.

[25] Kleanthis Malialis and Daniel Kudenko. ‘Distributed
response to network intrusions using multiagent rein-
forcement learning’. In: Eng. Appl. of AI 41 (2015),
pp. 270–284. DOI: 10.1016/j.engappai.2015.01.013.

[26] Hongzi Mao, Mohammad Alizadeh, Ishai Menache and
Srikanth Kandula. ‘Resource Management with Deep

Reinforcement Learning’. In: Proceedings of the 15th
ACM Workshop on Hot Topics in Networks, HotNets
2016, Atlanta, GA, USA, November 9-10, 2016. Ed. by
Bryan Ford, Alex C. Snoeren and Ellen W. Zegura. ACM,
2016, pp. 50–56. ISBN: 978-1-4503-4661-0. DOI: 10.1145/
3005745.3005750.

[27] Hongzi Mao, Ravi Netravali and Mohammad Alizadeh.
‘Neural Adaptive Video Streaming with Pensieve’. In:
Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM 2017, Los
Angeles, CA, USA, August 21-25, 2017. ACM, 2017,
pp. 197–210. ISBN: 978-1-4503-4653-5. DOI: 10.1145/
3098822.3098843.

[28] João Martins, Mohamed Ahmed, Costin Raiciu, Vladi-
mir Andrei Olteanu, Michio Honda, Roberto Bifulco
and Felipe Huici. ‘ClickOS and the Art of Network
Function Virtualization’. In: Proceedings of the 11th
USENIX Symposium on Networked Systems Design and
Implementation, NSDI 2014, Seattle, WA, USA, April 2-4,
2014. Ed. by Ratul Mahajan and Ion Stoica. USENIX
Association, 2014, pp. 459–473.

[29] Daisuke Miyashita, Edward H. Lee and Boris Murmann.
‘Convolutional Neural Networks using Logarithmic Data
Representation’. In: CoRR abs/1603.01025 (2016). arXiv:
1603.01025.

[30] Netronome. SmartNIC Overview. 2021. URL: https://www.
netronome.com/products/smartnic/overview/ (visited on
01/02/2021).

[31] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo,
Yury Audzevich, Sergio López-Buedo and Andrew W.
Moore. ‘Understanding PCIe performance for end host
networking’. In: Proceedings of the 2018 Conference of
the ACM Special Interest Group on Data Communication,
SIGCOMM 2018, Budapest, Hungary, August 20-25, 2018.
Ed. by Sergey Gorinsky and János Tapolcai. ACM, 2018,
pp. 327–341. DOI: 10.1145/3230543.3230560.

[32] NVIDIA. GPUDirect. Mar. 2021. URL: https://developer.
nvidia.com/gpudirect (visited on 14/10/2021).

[33] NVIDIA. NVIDIA BlueField Data Processing Units. Apr.
2021. URL: https://www.nvidia.com/en-gb/networking/
products/data-processing-unit/ (visited on 11/05/2021).

[34] Davide Sanvito, Giuseppe Siracusano and Roberto Bifulco.
‘Can the Network be the AI Accelerator?’ In: Proceedings
of the 2018 Morning Workshop on In-Network Comput-
ing, NetCompute@SIGCOMM 2018, Budapest, Hungary,
August 20, 2018. Ed. by Xin Jin and Changhoon Kim.
ACM, 2018, pp. 20–25. DOI: 10.1145/3229591.3229594.

[35] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson,
Panos Kalnis, Changhoon Kim, Arvind Krishnamurthy,
Masoud Moshref, Dan R. K. Ports and Peter Richtárik.
‘Scaling Distributed Machine Learning with In-Network
Aggregation’. In: 18th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2021, April
12-14, 2021. Ed. by James Mickens and Renata Teixeira.
USENIX Association, 2021, pp. 785–808.

[36] Kyle A. Simpson. FelixMcFelix/pdp-rl-paper. Quantifying

https://doi.org/10.1145/3289602.3293924
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://arxiv.org/abs/1601.06071
https://arxiv.org/abs/1601.06071
http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-72875
http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-72875
https://doi.org/10.1145/3307650.3322259
https://doi.org/10.1145/3307650.3322259
https://doi.org/10.1109/MICRO.2018.00023
https://doi.org/10.1109/MICRO.2018.00023
https://doi.org/10.1145/3341302.3342221
https://doi.org/10.1145/3341302.3342079
https://arxiv.org/abs/2007.01530
https://doi.org/10.1016/j.engappai.2015.01.013
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3005745.3005750
https://doi.org/10.1145/3098822.3098843
https://doi.org/10.1145/3098822.3098843
https://arxiv.org/abs/1603.01025
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://doi.org/10.1145/3230543.3230560
https://developer.nvidia.com/gpudirect
https://developer.nvidia.com/gpudirect
https://www.nvidia.com/en-gb/networking/products/data-processing-unit/
https://www.nvidia.com/en-gb/networking/products/data-processing-unit/
https://doi.org/10.1145/3229591.3229594


the effects of performing some (or all) work in an RL
system in the dataplane. Oct. 2021. URL: https://github.
com/FelixMcFelix/pdp-rl-paper (visited on 18/10/2021).

[37] Kyle A. Simpson, Simon Rogers and Dimitrios P. Pezaros.
‘Per-Host DDoS Mitigation by Direct-Control Reinforce-
ment Learning’. In: IEEE Trans. Network and Service
Management 17.1 (2020), pp. 103–117. DOI: 10.1109/
TNSM.2019.2960202.

[38] Giuseppe Siracusano and Roberto Bifulco. ‘In-network
Neural Networks’. In: CoRR abs/1801.05731 (2018).
arXiv: 1801.05731.

[39] Giuseppe Siracusano, Salvator Galea, Davide Sanvito,
Mohammad Malekzadeh, Hamed Haddadi, Gianni Antichi
and Roberto Bifulco. ‘Running Neural Networks on the
NIC’. In: CoRR abs/2009.02353 (2020). arXiv: 2009 .
02353.

[40] Viswanath Sivakumar, Tim Rocktäschel, Alexander H.
Miller, Heinrich Küttler, Nantas Nardelli, Mike Rabbat,
Joelle Pineau and Sebastian Riedel. ‘MVFST-RL: An
Asynchronous RL Framework for Congestion Control
with Delayed Actions’. In: CoRR abs/1910.04054 (2019).
arXiv: 1910.04054.

[41] Brent Stephens, Aditya Akella and Michael M. Swift.
‘Your Programmable NIC Should be a Programmable
Switch’. In: Proceedings of the 17th ACM Workshop
on Hot Topics in Networks, HotNets 2018, Redmond,
WA, USA, November 15-16, 2018. ACM, 2018, pp. 36–
42. ISBN: 978-1-4503-6120-0. DOI: 10.1145/3286062.
3286068.

[42] Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang
Wang, Swagath Venkataramani, Vijayalakshmi Srinivasan,
Xiaodong Cui, Wei Zhang and Kailash Gopalakrishnan.
‘Hybrid 8-bit Floating Point (HFP8) Training and Inference
for Deep Neural Networks’. In: Advances in Neural
Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada.
Ed. by Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox and
Roman Garnett. 2019, pp. 4901–4910.

[43] Richard S. Sutton and Andrew G. Barto. Reinforcement
Learning: An Introduction. 2nd ed. Adaptive Computation
and Machine Learning. Cambridge, MA: MIT Press, Nov.
2018. ISBN: 9780262039246. URL: http://incompleteideas.
net/book/the-book-2nd.html.

[44] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz
and Kunle Olukotun. ‘Taurus: An Intelligent Data Plane’.
In: CoRR abs/2002.08987 (2020). arXiv: 2002.08987.

[45] David E. Taylor and Jonathan S. Turner. ‘Scalable
Packet Classification using Distributed Crossproducting
of Field Labels’. In: INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications
Societies, 13-17 March 2005, Miami, FL, USA. IEEE,
2005, pp. 269–280. DOI: 10 . 1109 / INFCOM . 2005 .
1497898.

[46] The P4.org Architecture Working Group. P416 Portable

Switch Architecture (PSA). Working Draft. Jan. 2021.
URL: https://p4.org/p4-spec/docs/PSA.html (visited on
01/02/2021).

[47] Jaden B. Travnik, Kory Wallace Mathewson, Richard S.
Sutton and Patrick M. Pilarski. ‘Reactive Reinforcement
Learning in Asynchronous Environments’. In: Front.
Robotics and AI 2018 (2018). DOI: 10.3389/frobt.2018.
00079.

[48] Asaf Valadarsky, Michael Schapira, Dafna Shahaf and
Aviv Tamar. ‘Learning to Route’. In: Proceedings of the
16th ACM Workshop on Hot Topics in Networks, Palo
Alto, CA, USA, HotNets 2017, November 30 - December
01, 2017. Ed. by Sujata Banerjee, Brad Karp and Michael
Walfish. ACM, 2017, pp. 185–191. ISBN: 978-1-4503-
5569-8. DOI: 10.1145/3152434.3152441.

[49] Shibo Wang and Pankaj Kanwar. BFloat16: The secret
to high performance on Cloud TPUs. Aug. 2019. URL:
https : / /cloud.google .com/blog/products /ai - machine-
learning/bfloat16- the- secret- to-high-performance-on-
cloud-tpus (visited on 01/02/2021).

[50] Keith Wiles. Pktgen-DPDK – DPDK-based packet gener-
ator. 2021. URL: https://github.com/pktgen/Pktgen-DPDK
(visited on 29/05/2021).

[51] Shaolin Xie, Scott Davidson, Ikuo Magaki, Moein
Khazraee, Luis Vega, Lu Zhang and Michael Bedford
Taylor. ‘Extreme Datacenter Specialization for Planet-
Scale Computing: ASIC Clouds’. In: ACM SIGOPS Oper.
Syst. Rev. 52.1 (2018), pp. 96–108. DOI: 10.1145/3273982.
3273991.

[52] Xilinx. Xilinx Revolutionizes the Modern Data Center
with Software-Defined, Hardware Accelerated Alveo
SmartNICs. Feb. 2021. URL: https://www.xilinx.com/news/
press / 2021 / xilinx - revolutionizes - the - modern - data -
center - with - software - defined - hardware - accelerated -
alveo-smartnics.html (visited on 11/05/2021).

[53] Zhaoqi Xiong and Noa Zilberman. ‘Do Switches Dream of
Machine Learning?: Toward In-Network Classification’. In:
Proceedings of the 18th ACM Workshop on Hot Topics in
Networks, HotNets 2019, Princeton, NJ, USA, November
13-15, 2019. ACM, 2019, pp. 25–33. ISBN: 978-1-4503-
7020-2. DOI: 10.1145/3365609.3365864.

[54] Chengliang Zhang, Suyi Li, Junzhe Xia, Wei Wang, Feng
Yan and Yang Liu. ‘BatchCrypt: Efficient Homomorphic
Encryption for Cross-Silo Federated Learning’. In: 2020
USENIX Annual Technical Conference, USENIX ATC
2020, July 15-17, 2020. Ed. by Ada Gavrilovska and
Erez Zadok. USENIX Association, 2020, pp. 493–506.

[55] Noa Zilberman, Yury Audzevich, G. Adam Covington and
Andrew W. Moore. ‘NetFPGA SUME: Toward 100 Gbps
as Research Commodity’. In: IEEE Micro 34.5 (2014),
pp. 32–41. DOI: 10.1109/MM.2014.61.

https://github.com/FelixMcFelix/pdp-rl-paper
https://github.com/FelixMcFelix/pdp-rl-paper
https://doi.org/10.1109/TNSM.2019.2960202
https://doi.org/10.1109/TNSM.2019.2960202
https://arxiv.org/abs/1801.05731
https://arxiv.org/abs/2009.02353
https://arxiv.org/abs/2009.02353
https://arxiv.org/abs/1910.04054
https://doi.org/10.1145/3286062.3286068
https://doi.org/10.1145/3286062.3286068
http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/2002.08987
https://doi.org/10.1109/INFCOM.2005.1497898
https://doi.org/10.1109/INFCOM.2005.1497898
https://p4.org/p4-spec/docs/PSA.html
https://doi.org/10.3389/frobt.2018.00079
https://doi.org/10.3389/frobt.2018.00079
https://doi.org/10.1145/3152434.3152441
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://github.com/pktgen/Pktgen-DPDK
https://doi.org/10.1145/3273982.3273991
https://doi.org/10.1145/3273982.3273991
https://www.xilinx.com/news/press/2021/xilinx-revolutionizes-the-modern-data-center-with-software-defined-hardware-accelerated-alveo-smartnics.html
https://www.xilinx.com/news/press/2021/xilinx-revolutionizes-the-modern-data-center-with-software-defined-hardware-accelerated-alveo-smartnics.html
https://www.xilinx.com/news/press/2021/xilinx-revolutionizes-the-modern-data-center-with-software-defined-hardware-accelerated-alveo-smartnics.html
https://www.xilinx.com/news/press/2021/xilinx-revolutionizes-the-modern-data-center-with-software-defined-hardware-accelerated-alveo-smartnics.html
https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1109/MM.2014.61

	Introduction
	Preliminaries: towards in-NIC RL
	Programmable hardware capabilities
	Reinforcement Learning
	Tile-coded policy approximation

	Design and Implementation
	Challenges, solutions, and insights
	System Model
	Action and Update Computation
	Agent-Environment Communication
	Intra-Agent Communication
	Reconfigurability
	Work Allocation
	Limitations

	Evaluation
	Netronome Platform Fundamentals
	Experimental Setup
	Experiments
	Results and Discussion

	Potential Integrations
	In-Network DDoS Defence
	Network Deployment Considerations

	Related Work
	Conclusion

