
© IFIP, 2023. This is the author’s version of the work. It is posted here by permission of IFIP for your personal use.
Not for redistribution. The definitive version was published in the 22nd International IFIP TC6 Networking

Conference, Networking 2023, Barcelona, Spain, June 12-15, 2023,
https://doi.org/10.23919/IFIPNetworking57963.2023.10186412.

GALETTE: a Lightweight XDP Dataplane
on your Raspberry Pi

Kyle A. Simpson

[0000-0001-8068-9909], Chris Williamson

[0000-0003-1108-9402],
Douglas J. Paul

[0000-0001-7402-8530], Dimitrios P. Pezaros

[0000-0003-0939-378X]

University of Glasgow, Glasgow, Scotland
kylesimpson1@acm.org

Abstract—IoT and sensor networks are now a critical part of
public infrastructure. At the same time, they remain infamous
for becoming insecure as new exploits arise. Software dataplanes
give us the power to retrofit security functions, and are well-
researched in datacentres. Yet the server-grade hardware such
frameworks are optimised for is a poor fit for vulnerable low-
power, low-space IoT gateways. Single-board computers (SBCs)
are a cheaper and better fit on all these metrics, yet no service
function chaining (SFC) approaches are tailored to these devices.
In addition, modern OS features like XDP give us the capability
to minimise power use and provide the lowest latency processing
these devices can offer—meaning quicker response to network
events, suited to the needs of the network edge.

We present GALETTE, a device-portable SFC framework de-
signed for the inexpensive defence of IoT networks by SBCs.
GALETTE builds on Linux’s XDP framework to provide a CPU-
efficient, low latency dataplane. Due to SBC hardware designs, we
divide traffic between an XDP fast path and userland, which lets
us schedule expensive packet analysis without harming normal
traffic. Our API makes it easy to write network functions (NFs)
which compile to both eBPF and native code, while being portable
across heterogeneous SBCs. Testbed evaluations show how this
is more efficient, faster, and uses less power than AF_PACKET on
Raspberry Pi.

I. INTRODUCTION
IoT and sensor networks—particularly legacy installations—
are infamous for their (perceived) lack of security. Earlier
devices have often been built without incorporating ‘security
by design’, leading to widespread compromise via malware
like Mirai [1]. Although such high-publicity mishaps have
caused a sea change in how security is treated by vendors
and legislation [31], long-term rollout of security updates can
be hard to guarantee as new exploits and attacks become
public. Yet when the sensor networks built on such abandoned
components underpin critical infrastructure, this leaves admin-
istrators in the difficult position of having to pursue fleetwide
device replacements. This can be prohibitively expensive—
particularly if these vulnerable networks are physically remote.
Ideally, we desire an inexpensive and dynamically reconfigur-
able way to retrofit security functions into such networks with
a single up-front cost as the threat landscape evolves.
Software dataplanes are a powerful, long-standing tool for

flexible network traffic processing, and offer the necessary
flexibility to defend such networks. Since Click’s [16] debut
decades ago, Service Function Chaining (SFC) has been key
in realising composable packet processing for measurement
and security. The community seeks always to improve its

ACL

a)

Rate Check

b)

DPI

c)

Stats

d)

ru
st
c
&

Re
dB

PF a) b)

c) d)

RX

a b c

d

DROP

TX

chain.toml

c d D

a b d

RX D TX HW

XDP FAST
PATH

USER
(AARCH64)

BPF Maps
(State)

AF_XDP

AF_XDP

REMOTE COMPILE SERVER
SBC TRAFFIC
PROCESSOR

NF Binaries

NF Config

Figure 1. GALETTE splits traffic processing between an XDP fast path
and userland, which makes the best possible use of SBC device resources.
Individual NFs are written in Rust and remotely compiled to native and eBPF
code, written with a single API that abstracts over runtime details.

design and performance: via accelerated network stacks like
DPDK [2], safer language tooling [19], or novel hardware
features like Trusted Execution Environments (TEEs) to im-
prove security [21] in untrusted, multitenant infrastructure. As
a result, we can now attest that packets are processed by
the right functions without interference at high traffic rates—
provided we have high-performance, well-supported hardware.
Yet the limited space and power available in IoT or edge

deployments—to say nothing of their physical vulnerability—
mean that we would be better served by inexpensive, low-
power devices than by server-class hardware. Single-Board
Computers (SBCs) like Raspberry Pis fall into this category,
but are computationally weaker while lacking the hardware
and driver support necessary for the above advances in SFC,
like DPDK support and TEEs. Additionally, such SBCs often
run Linux, allowing us to run standard software and take
advantage of advances in its kernel and network stack.
To our benefit, raw computational power is not always

needed. While SFCs at datacentre scale must handle millions
of packets per second, data rates of IoT sensor networks can
peak at 100–1000 kbit/s according to industrial partners we’ve

https://doi.org/10.23919/IFIPNetworking57963.2023.10186412
https://orcid.org/0000-0001-8068-9909
https://orcid.org/0000-0003-1108-9402
https://orcid.org/0000-0001-7402-8530
https://orcid.org/0000-0003-0939-378X
mailto:kylesimpson1@acm.org

consulted with, while otherwise remaining mostly dormant.
However, time-critical functionality like cybersecurity func-
tions or network fault analytics still require the minimal
response times that local dataplane processing provides. This
gives us scope to use SBC hardware as part of an in-situ
‘Goldilocks’ solution, allowing administrators to choose a
packet processing device with just the right size, cost, and
power draw for a network’s expected ingress/egress rates—
without needing to steer traffic to an external cloud provider
for scrubbing. This keeps latency—and thus the reaction time
to adverse security events—as low as possible.
Where existing works look at SFC through the lens of data-

centre networking, our research question is how best we can
enable traffic processing on SBC devices by taking advantage
of modern kernel features to implement the most performant,
lowest latency dataplanes possible. We present GALETTE—a
device-portable SFC framework and runtime based on the
modern XDP [10] and AF_XDP [5] network stack bypass.
GALETTE (Figure 1) explores the SFC feasibility of SBCs
at various price-performance points (e.g., Raspberry Pis and
Intel NUCs), and provides a consistent platform for all Linux-
capable SBCs. We use a two-tier strategy, splitting network
functions (NFs) between XDP and userland.NFs are written
in Rust [28] against a simple API, and are compiled on
a remote control node into both native and eBPF binaries.
However, (AF_)XDP’s true value for SBC devices is that
its performance scales gracefully with driver support, which
buys improvements like zero-copy and elimination of SKB
allocation. Our framework requires only a modern Linux
version, and benefits from the strong sandboxing and valida-
tion of eBPF (§II). While primarily designed for retrofitting
cybersecurity, our work can also be used for arbitrary NFs
such as secure tunnelling of traffic [30], local reduction of
sensor and telemetry data for external processing [26], or
compressed ML/RL models [24, 27].

A. Contributions
This paper contributes:

• an analysis of the differences between SBC and server
hardware which prevent us from taking full advantage of
XDP (§III),

• control- and data-plane designs built on (AF_)XDP to
allow efficient SFC installation, reconfiguration, and
scheduling on SBCs in spite of these differences (§IV),

• a simple API and chain format for building SFCs to target
both eBPF and userland environments (§IV-A–IV-B),

• a quantitative evaluation of the forwarding performance
and resource use of GALETTE against other usable soft-
ware dataplanes in SBCs, as well as how our two-tier
design allows effective loadbalancing and scheduling of
expensive NFs (§V–VI).

II. BACKGROUND
eBPF: The extended Berkeley Packet Filter (eBPF) is a simple
RISC VM bytecode language used to execute arbitrary user-
written code in Linux kernel contexts at runtime [8]. eBPF

programs can be attached to various hooks or tracepoints in the
kernel for precise instrumentation or additional control over,
e.g., network stack behaviour. Each valid kernel hook exposes
a different set of BPF helpers—a limited set of privileged
operations allowed by the kernel in a given function, such
as buffer manipulation or adjusting the header pointer for a
packet SKB. Programs are restricted similarly to constrained
embedded targets: dynamic memory allocation is impossible,
and there is no support for floating point arithmetic. Programs
may hold state between invocations or share it with userland
code via BPF Maps, which abstract over arrays, hash maps,
and more specialised structures like longest-prefix match tries.

The Linux kernel does some heavy lifting to ensure this
functionality is safe and performant. The main mechanism for
doing so is its eBPF Verifier, which ensures that all pointer
and map accesses are length-checked and that the program
is guaranteed to terminate in a bounded time. Programs
themselves are each limited to 4096 instructions, 512B of
stack space, and may be linked via tail-calls up to a maximum
32 programs. Additionally, all used BPF helpers must be
permitted by the call site, and only pointers supplied by the
kernel (or maps) have the type and length information needed
to be dereferenced. Kernel versions 5.3 onwards allow for the
use of trivially bounded loops without unrolling. Following
verification, BPF programs are JIT-compiled for the host archi-
tecture by translating BPF instructions to their native machine
code equivalents—program code is then further hardened by
write protecting memory and constant blinding to prevent the
insertion of exploitable native code gadgets [12].

XDP: The eXpress Data Path (XDP) is a network-stack bypass
mechanism for Linux, allowing eBPF programs to handle
network packets at the earliest possible stage in the kernel [10].
XDP hooks may modify packet contents and adjust header
lengths (enabling en/decapsulation), and may quickly redirect
packets to be transmitted on their arrival port or any other NIC.
Packets may also be redirected to other registered XDP hooks
via eBPF tailcalls, or to the standard network stack. The stack
bypass is completed by AF_XDP [5], which allows packets to be
passed from XDP hooks to userland, allowing packets which
need more complex processing to entirely skip the Linux
network stack. This follows a netmap-like design [22], passing
UMEM frame descriptors between contexts using a set of ring
buffers. To take advantage of multicore systems and scale to
high packet rates, XDP runs one eBPF context in parallel for
each hardware receive queue exposed by a NIC.

XDP is particularly valuable compared to other stack or
kernel bypass approaches like DPDK [6] because it does not
require dedicated driver support. All NICs are supported by
default by placing the eBPF program after SKB allocation;
performance benefits scale gracefully with driver support,
enabling the hook to run before SKB creation or in a zero-copy
mode. Capable hardware like SmartNICs [18] or hXDP [3]
may even offload eBPF code to the NIC for true kernel bypass.

III. MOTIVATION
While (AF_)XDP SFC frameworks are well-studied (§VII),
SBCs—particularly those in edge or IoT networks—are dif-
ferentiated from datacentre or cloud environments in key ways
that existing frameworks do not account for:

• Raw compute performance and resources. SBCs such as
Raspberry Pis have slower CPU clocks, fewer cores, and
less RAM then server-grade hardware, making it harder
to run more costly NFs within packet deadlines. However,
this further amplifies the impact of host networking stack
overheads on packet processing latency and throughput.
This ties into two useful counterpoints raised in §I:
IoT and sensor networks exhibit low (sub-Mbit/s) data
rates, so low-power processing nodes are an ideal fit;
equally, the lower up-front cost of these platforms makes
them more attractive for installation in vulnerable and
remote environments. Yet we must still take advantage of
advances in modern network stacks to minimise power
use and reduce latency—meaning quicker response to
network events, particularly in security-focussed SFCs.

• Rx/Tx queues and use of NIC virtual functions. XDP’s
degree of parallelism scales according to the number of
Rx queues exposed by a NIC. Datacentre NICs targeting
10GbE and above allow Rx queues and virtual functions
to be created on demand, thus XDP-based frameworks
can easily scale to have as many pipelines as are required
to meet bandwidth needs. On the contrary, we find
that GbE and below NICs common to SBCs—including
those with DPDK support, such as the Intel I219-V—
expose only a single Rx/Tx queue. Though many SBCs
are multicore devices, this mismatch prevents the XDP
datapath from scaling to fit these extra cores. As a result,
SFCs on this single pipeline are vulnerable to tail latency
spikes and throughput losses caused by more expensive
NFs which may only be needed by a subset of traffic.

A concrete use case is in how an SBC-based SFC frame-
work could be used to secure legacy IoT or sensor networks
at minimal cost, as in §I. Assuming exploit-based attacks
rather than volumetric DDoS traffic (which would have to to
effectively be dealt with upstream), the majority of network
packets traversing an IoT gateway are likely to be normal,
and should not require complex processing like deep packet
inspection (DPI)—which would block an SBC’s sole XDP
thread. Most importantly, we need a framework with the
agility to install, update, and reconfigure chains of NFs to
defend against attacks as they evolve.

IV. DESIGN
We present here our design and implementation for
GALETTE, which takes advantage of advances in Linux host
networking—XDP—to provide a portable, device independent
framework for deploying SFCs onto modest-spec heterogen-
eous devices irrespective of machine architecture.
We use a hybrid XDP and userland solution to bring low-

latency SFCs to inexpensive SBC hardware, enabling the ret-

-- NF & Map definitions --
[functions.access-control.maps]
allow-list = { type = "lpm-trie", size = 65535 }

[functions.weak-classifier]
maps = { flow-state = "_" }

[functions.dpi]
maps = { flow-state = "_" }
disable_xdp = true

[maps.flow-state]
type = "hash_map"
size = 65535

-- Chain definition --
[[links]]
from = "rx"
to = ["access-control"]

[[links]]
from = "access-control"
to = ["tx", "weak-classifier"]

[[links]]
from = "weak-classifier"
to = ["tx", "!dpi", "drop"]

[[links]]
from = "dpi"
to = ["tx", "drop"]

Listing 1. A security-focussed function chain. Cheaper classification is kept
in the XDP datapath, while expensive analyses are pushed into userland.

rofitting and modification or defence of IoT & sensor networks
(fig. 1). Chains are composed of individual crates written
in Rust—each compiled to both eBPF and native machine
code by a remote control plane machine—against a simple
API which unifies packet accesses in both environments. This
enables easy dual compilation into both eBPF and native
machine code while guaranteeing memory safety, but crucially
allows one chain to compile to SBCs with different CPU
architectures. Userland-only (non GALETTE-native) NFs may
link to external C libraries. As modern SBCs are multicore
but their NICs typically support only a single XDP thread, we
push expensive or complex NFs (possibly required by only
a subset of traffic) out of the main datapath to exploit extra
cores for load balancing while eliminating packet stalls and
minimising extra latency.

A. Chain format
SFCs are defined by administrators via a user-friendly TOML
format, which affords control over BPF map definitions as well
as where individual NFs are run. Listing 1 shows a practical
example of a security-focussed chain: packets are processed by
an ACL backed by an LPM trie map, while suspicious packets
are also checked by a cheaper statistical classifier which may
trigger an expensive DPI operation in userland. Any map may
be shared between NFs by pointing to a [maps.<x>] block.
Every chain starts from "rx", and routes from there to

its NFs and the special destinations "tx", "pass", "abort",
and "drop". These correspond to most of the standard XDP
actions—XDP_PASS forwards a packet to the standard host
networking stack, and is useful if control plane traffic must be
sent in-band (i.e., a bump-in-the-wire installation at a site with

#![no_std]
pub use nf::*;

#[maps]
pub struct Maps { count: (u32, u64) }

pub enum Action { Continue }

pub fn packet<M1>(
mut pkt: impl Packet,
mut maps: Maps<M1>

) -> Action where M1: Map<u32, u64>,
{

if let Some(bytes) = pkt.slice(12) {
// bytes: &mut [u8]
let (src_mac, rest) = bytes.split_at_mut(6);
src_mac.swap_with_slice(&mut rest[..]);

if let Some(n) = maps.count.get(&0) {
maps.count.put(&0, &(n + 1));

}
}

Action::Continue
}

Listing 2. A counting macswap function in GALETTE. GALETTE-native NFs
are written in Rust with a simple API shared between eBPF and native targets.

poor cellular service). The number of valid to destinations is
determined and checked during code generation (§IV-C).
Listing 1 also demonstrates two ways that users can manage

the placement of NFs—they may explicitly run any NF in user-
land with the "!dest" syntax, or set disable_xdp = true to
do this implicitly and skip eBPF compilation (§IV-C). Control
over these mechanisms is explicit to allow users to define pure
XDP chains and avoid cross-compilation, or to effortlessly
load-balance a single chain between userland and XDP. The
exception is that calls are forcibly moved to userland if the
chain length exceeds 32 NFs.

B. Shared NF API
Compiling to eBPF requires that we mark an NF’s crate as
#![no_std], yet there are standard functions that NF authors
desire use of like random number generation, timestamping,
map declaration/access, and packet headroom adjustments.
Also, though both NF environments provide packet access
via a byte buffer, the eBPF verifier requires that packet
accesses are length checked in a particular way to pass static
verification (i.e., such that Rust’s pointer-length slices are
inadequate). To this end, we provide a small standard library
and a family of traits which enable programmers to write
GALETTE-native NFs.
Listing 2 shows how a simple MAC swapping NF is imple-

mented in GALETTE. The Packet trait abstracts over different
packet access semantics in userland and XDP, implemented
for UMEM frames and XDP contexts, respectively. Handling
of maps requires a custom procedural macro, #[maps], which
converts (K,V) pairs into generic Map<K,V>s and exposes
these types such that they can be programmatically manip-
ulated when building concrete NF skeletons for each target.
Userland-only NFs do not require the #![no_std] tag, and

are thus free to call standard library functions, as well as link to
and call precompiled libraries and native code. This frees users

NF a

nf(ctx.body)

Get action

Write IDs Redirect to AF_XDP

Result ⊛ Action PROG

0 Tx —
1 Call NF b
2 Upcall —

⊛

Upcall
Tx, Drop

Call
NF

Tx

get(⊛)

AF_XDP
Sockets (XSKs)

Entry: XDP hook

get(rand())

Figure 2. Packet processing in the XDP Fast Path (NF maps omitted).

from having to reimplement complex well-tested NFs, but also
allows administrators to limit and reason about the unsafety of
(possibly proprietary) C codebases. These currently use eBPF
maps, and so key/value types must be plain-old-data structs.
In future these NFs could instead be given direct access to
efficient userland shared data structures.

C. Compilation
SBCs lack the resources to (re-)compile NFs. Compilation of
NFs in an SFC is thus performed by an external controller
machine which is trusted from the outset (§IV-E), where eBPF
binaries (“.elf”) and dylibs (“.so”) are incrementally sent over
the network. The root lib.rs file for each NF is parsed into
an AST using the ‘syn’ library, from which we extract:

• the type name of the first struct decorated with #[maps]
plus its number of fields, and

• the return type of the main packet() function as well as
the number of enum variants it has.

We compare this against the chain definition file to ensure
that there is a one-to-one correspondence between these and
the expected number of maps and output branches. From this,
we then generate source code and crates which compile to an
eBPF program and dylib. Userland NFs require little additional
code. Generation of XDP NFs is slightly more involved: we
insert a declaration for each map required by user code (with
key and value types exposed and inserted via the NF API—
§IV-B), allocate maps for AF_XDP sockets, and storage for NF
chain actions and next hops via the PROG_ARRAY map type.

D. Dataplane operation
XDP (fig. 2): On arrival, the main body of the NF is executed
and its output is used as an index to the map of actions
defined by the chain—e.g., XDP_TX/DROP, NF calls. Although
eBPF maps have a small runtime lookup cost, we make use
of them to store action mappings to enable dynamic, fast
reconfiguration without needing to recompile any NFs.
When calling another NF, we perform an XDP tail-call

into a PROG_ARRAY using the same index. When upcalling
to userland via AF_XDP, packets arrive without explicitly
including XDP state but do include user-defined metadata.
As AF_XDP sockets rely on single-producer-single-consumer
(SPSC) rings to move frames between userland and the kernel,
we create one socket per running userland thread and load
balance between them using the bpf_get_prandom_u32()
helper function. However, as any chain allows many discrete
XDP→Userland transitions, we need to signal the identity of

Rx

Tx

Completion

U
ME

M NF ID ⊛ Packet Body

Get packet(s)

next_nf(ID,⊛)

nf_dylib(pkt,△)

Cleanup

NF b△

Ca
ll

:
△′

read()

get(△)

Drop

Tx

Figure 3. Packet processing in userland (single-thread, NF maps omitted).

the callee NF so that packet processing can resume. To work
around this we assign a unique ID to each live NF. When
an upcall is required, we expand a packet’s metadata by 8B
to store this ID and the action index—inspecting the kernel
source code, this resolves to a cheap pointer adjustment within
the larger headroom block rather than a memcpy.
Userland (fig. 3): Packets are received on the Rx ring of each
userland thread’s AF_XDP socket, and XDP metadata is read
from the UMEM frame to establish the callee and target NFs.
This allows us to look up the function pointer given by the
required NF’s dynamic library, and packets are then processed
by run-to-completion. We choose this model as there is no
native mechanism to pass packets back to XDP—subsequent
GALETTE-native NFs are also executed as dylibs (which can
be better-compiled than the in-kernel JIT). Some other XDP-
based approaches like Polycube [13] choose to downcall using
a TAP device after every ‘slow-path’ NF executes. We choose
not to pay the extra repeated overhead needed to do so, while
also keeping packet pressure off the sole XDP fast-path thread.
As SBC hardware allows us to bind only a single Rx queue

for XDP, we are forced to use a single UMEM pool between all
AF_XDP sockets. In turn, UMEM frame cleanup and recycling
can only occur on a single thread. We delegate these tasks
to the first userland thread, using ring buffers between it and
threads 2–𝑛 to correctly handle packet drop/abort actions.

E. Control plane
GALETTE-enabled SBCs are setup with pre-shared TLS keys
and certificates to enable mutual authentication with a known
control plane server. The SBC device periodically contacts
this server to retrieve chain information, NF binaries, and
to synchronise eBPF map contents. In our current prototype,
devices also specify their kernel version and provide vmlinux
debug information—the underlying redbpf toolchain does not
yet support eBPF CO-RE [17]. The SBC’s control plane com-
ponent then loads eBPF programs and dlopens dylibs, installs
shared maps and chain actions plus PROG_ARRAY entries for
tail calls, and finally links the initial NF to the XDP hook.
Reconfigurability: Chains are received by the SBC as a graph
of links between 128 bit NF UUIDs. If the retrieved chain
differs from the one installed locally, the SBC requests any
NFs whose UUIDs are needed1. eBPF’s PROG_ARRAY maps

1We do not conditionally download the XDP & userland variants of an
NF. This reduces the latency of a chain reconfiguration (i.e., in response to
unexpected load), at the cost of an increased initial transfer time.

contain only pointers to other eBPF programs, and element-
wise are guaranteed to update atomically. However, chain-
wide updates require more care as multiple actions associated
with an NF may be updated, or we may need to apply several
updates concurrently2. This can be performed analogously to
Xing et al. [33]’s ‘program consistency’; we may recursively
build a replacement chain as a tree from changed NFs or
links, before atomically replacing the tail-call into the tree’s
root. Duplicated but unchanged NFs refer to the same eBPF
maps as their live counterparts. In the worst case this is
equivalent to rebuilding the entire chain, but it should be
noted that this is feasible here without sacrificing consistency
guarantees because, while computationally limited, SBCs are
less constrained than, e.g., P4 switches in usable memory and
live program space. Userland replacement of individual NFs
is simplified by the use of function trampolines.

F. Limitations
XDP hooks allow for a maximum 32 tail calls—currently we
force an upcall at this threshold. While we could joint-compile
NFs to keep longer chains in the ‘fast path’, this requires that
we also explicitly deoptimise programs in response to chain
changes. While this may also add some performance benefit,
the cost of each tailcall is negligible [13]. The source code
requirement for fast path NFs appears, at first, to be overly
restrictive. A future extension of GALETTE can apply the same
technique as SafeBricks [21] to allow for proprietary code to be
safely compiled in a TEE hosted on the remote compile server.
Other facets of IoT deployments complicate the control plane
operation of GALETTE—for instance, unpredictable downtime
and the lack of ECC memory threaten long-term integrity
of cryptographic keys. We are developing mechanisms based
on physical uncloneable functions [9] to reauthenticate new
ephemeral keys for the control plane.

V. EVALUATION
We perform a testbed evaluation of GALETTE to understand
how it performs in raw throughput and latency against existing
stacks, as well as how the two-tier execution framework
allows us to handle more expensive NFs in a scalable way.
We describe here the experimental design used to investigate
these system properties. As SBCs include machines at many
different price-performance points, we aim to show these
characteristics on both Raspberry Pis (∼£30, 1.4–3.7W) and
i7-equipped Intel NUCs (∼£500, TDP 28W).

A. Testbed setup
Our testbed comprises the below machines:
Compile AMD Ryzen 9 5900X (12 × 3.7GHz), 32GiB RAM,

WSLArch 5.15.79 via WSL2.
TrafGen, NUC Intel NUC8i7BEK (4 × 4.5GHz), 16GiB

RAM, Ubuntu Server 22.04 5.15.0-56-lowlatency.
RPi Raspberry Pi Model 3B (4 × 1.2GHz), 1GiB RAM,

Raspberry Pi OS 11 (AArch64) 5.15.74-v8+.

2While BPF_MAP_TYPE_ARRAY_OF_MAPS would be ideal for simplifying this
logic, these cannot currently store PROG_ARRAYs.

All devices use a shared WiFi network for control plane
traffic, with Compile used to build NFs for all target platforms,
serve as the controller for GALETTE, and orchestrate all exper-
iments. Our dataplane testbed consists of TrafGen, NUC, and
RPi, which are connected over Ethernet via a TP-Link TL-
SG108S GbE switch, although RPi’s built-in NIC supports
only 100BASE-T. We note that the RPi NIC is a USB 2.0
peripheral (SMSC LAN9514), while the NUC’s NIC connects
over PCIe (Intel I219-V). As a result, RPi packet arrivals are
affected by the LAN9514 Ethernet controller’s minimum USB
polling interval of 1ms [15, p. 32]. All dataplane devices
were set up with DPDK 22.07, and Active State Power
Management was disabled where possible for more reliable
Ethernet performance. RPi’s Linux kernel was recompiled
from the official Raspberry Pi OS source to include XDP
support, the eBPF JIT, and BTF debug information (which
are disabled by default). IRQ throttling was disabled on both
NUC and TrafGen to minimise forwarding latency.
Throughput and latency are measured by TrafGen using

Pktgen-DPDK [32], generating and receiving traffic at the
target speed and packet size for bursts of 11 s. We assess sys-
tem load via CPU and, where possible, power measurements.
CPU measures were recorded by reading /proc/stat every
0.5 s on the device under test. Power measurements for RPi
were recorded using an RDTech UM24C USB load monitor,
polled every 0.25 s over Bluetooth from TrafGen. We run each
experiment over 10 trials.
We have implemented our SFC compiler and core dataplane

functionality in Rust v1.65.0, while using v1.59.0 to compile
eBPF binaries due to LLVM version limits of the redbpf
library. Our code and data are publicly available as open
source artefacts [25]. The Arch Linux GCC 9.3.0 toolchain
was used to cross-compile for AArch64 due to libc version
dependencies in our target machines.

B. Experiments
Optimal dataplane performance: We install a simple Mac-
swap NF via GALETTE to measure its optimal forwarding
throughput and latencies on a variety of rates (0.1, 1, 10, 50
and 100Mbit/s) and packet sizes (64, 128, 256, 512, 1024,
1280 and 1518B). We are interested in how both our XDP fast
path and the slower userland AF_XDP datapath behave in these
metrics and resource utilisation—particularly under the high
packet-per-second requirements imposed by smaller packets.
The single userland thread is pinned to core 1. Uncertainties
in tables represent 95% CIs, while latency boxplots show {1,
25, 50, 75, 99}th percentiles. We compare GALETTE against
baselines provided by DPDK’s testpmd application to estab-
lish maximum throughput and minimum forwarding latency,
using a Macswap NF. On RPi this lets us compare against
AF_PACKET for packet access under optimal conditions, while
on NUC we may also compare against the performance of the
e1000e poll-mode driver (PMD).
As AF_XDP supports polling on sockets from userland, we

investigate the effects of reading from the userland socket via
polling (Poll/P) or blocking I/O (IRQ). We set a minimum-

100

1000

10000

100000

0.1 0.5 1 10

M
ac
sw

ap
La
te
nc
y
(µ
s)

Ingest Rate (Mbit/s)

Gal—XDP
Gal—XDP (P)
Gal—AF_XDP

Gal—AF_XDP (P)
AF_PACKET

Figure 4. Macswap latency distributions for 64B packets on RPi for GALETTE
vs. AF_PACKET. The XDP fast path outperforms AF_PACKET, has better tail
latencies at higher rates, and improves by polling at low data rates.

Table I
RASPBERRY PI MACSWAP NF THROUGHPUT AND RESOURCE USE, 64B PACKETS.
Dataplane Ingest Rate (Mbit/s) Throughput (Mbit/s) CPU (%) Power (mW)

IRQ Poll IRQ Poll IRQ Poll

Pure XDP 0.1 0.1 0.1 1.8(24) 25.6(13) 1675.7(23) 2230.3(104)
1 0.9 0.9 3.0(39) 26.6(16) 1664.3(30) 2097.0(104)
10 9.4 9.4 20.0(61) 41.3(53) 1802.8(75) 2186.3(85)
50 2.9(3) 3.9(22) 40.0(42) 52.8(221) 1826.5(85) 2227.1(100)

AF_XDP 0.1 0.1 0.1 2.1(25) 25.4(10) 1695.7(29) 2321.3(81)
1 1.0 1.0 3.9(26) 26.4(17) 1702.5(29) 2197.2(103)
10 9.5 9.5 35.6(57) 38.6(96) 1852.2(94) 2298.8(106)
50 3.7(2) 5.2(16) 46.9(46) 62.1(47) 1844.3(94) 2286.3(123)

AF_PACKET 0.1 — 0.1 — 64.4(342) — 2107.5(45)
1 — 1.0 — 54.7(75) — 2068.2(36)
10 — 9.5 — 75.9(86) — 2198.6(77)
50 — 3.4(6) — 84.4(81) — 2192.5(70)

length 1ms timeout on blocking reads. This offers a useful
point of comparison against our baselines which operate by
polling, in addition to another way to impact the performance
of both our XDP and userspace datapaths.
Scheduling expensive NFs: Returning to the earlier security-
focussed case study, SBC hardware limits us to a single
XDP thread—a single pipeline is thus vulnerable to the
impact of packets which require more costly processing. We
investigate how a single expensive NF of 100k operations—
analogous to expensive ML inference or DPI—affects through-
put and median/tail latency, and whether moving this traffic
to userland can alleviate these issues. We vary the prob-
ability that a packet requires an expensive NF, 𝑃 ∈
{0, 0.01, 0.05, 0.1, 0.25, 0.5, 1.0}. This is measured for 64B
packets, giving the highest ingest PPS (thus strictest packet
deadlines) at a rate that each device can meet on XDP
for this packet size with some slack time (10Mbit/s for
RPi, 100Mbit/s for NUC). We then narrow our focus to a
challenging scenario for each device—fixing 𝑃 = 0.5—to
investigate how extra processing threads in userland can be
used to balance the load imposed by higher proportions of
expensive packets.

VI. RESULTS AND DISCUSSION
A. Optimal dataplane performance
Figure 4 shows the distribution of packet latencies on RPi,
up to its peak stable throughput for 64B packets. We
see that GALETTE’s XDP fast path significantly outperforms
AF_PACKET—29–41% lower median latencies for 0.1Mbit/s

0

100

200

300

400

500

600

700

800

900

1000

0.1 0.5 1 10 50 100

M
ac
sw

ap
La
te
nc
y
(µ
s)

Ingest Rate (Mbit/s)

Gal—XDP Gal—AF_XDP

(a) IRQ

40

60

80

100

120

140

160

180

200

220

0.1 0.5 1 10 50 100

M
ac
sw

ap
La
te
nc
y
(µ
s)

Ingest Rate (Mbit/s)

Gal—XDP (P)
Gal—AF_XDP (P)

AF_PACKET

DPDK

(b) Poll
Figure 5. Macswap latency distributions for 64B packets on an Intel NUC for GALETTE vs. AF_PACKET and DPDK. XDP consistently outperforms AF_XDP,
with both seeing improvements at higher traffic rates. Polling improves the performance of GALETTE beyond AF_PACKET, but cannot beat DPDK.

Table II
RASPBERRY PI MACSWAP NF THROUGHPUT AND RESOURCE USE, 1518B PACKETS.
Dataplane Ingest Rate (Mbit/s) Throughput (Mbit/s) CPU (%) Power (mW)

IRQ Poll IRQ Poll IRQ Poll

Pure XDP 0.1 0.1(1) 0.1 1.8(23) 25.5(15) 1678.6(28) 2259.8(113)
1 1.0(1) 1.0(1) 1.7(24) 25.5(19) 1684.4(22) 2224.5(106)
10 9.9(1) 9.9 2.1(38) 26.3(15) 1709.6(31) 2181.6(105)
50 49.1(1) 49.1 5.3(44) 30.2(46) 1745.1(43) 2185.7(105)
100 97.6(1) 97.6(1) 10.4(66) 36.9(67) 1824.5(84) 2253.6(98)

AF_XDP 0.1 0.1(1) 0.1(1) 1.8(22) 25.4(13) 1697.2(21) 2330.7(92)
1 1.1 1.0(1) 2.1(34) 25.7(25) 1686.2(24) 2254.4(100)
10 9.9 9.9 3.6(28) 26.0(22) 1714.5(30) 2285.5(106)
50 49.1(1) 49.1(1) 14.0(45) 29.6(37) 1761.3(51) 2258.7(108)
100 97.6(1) 97.6 32.4(78) 36.5(50) 1885.1(104) 2227.9(100)

AF_PACKET 0.1 — 0.1(1) — 53.6(63) — 2069.1(37)
1 — 1.1 — 54.1(72) — 2072.4(44)
10 — 9.9 — 56.9(125) — 2069.3(37)
50 — 49.1 — 63.1(53) — 2152.8(54)
100 — 97.7(1) — 74.3(75) — 2253.9(88)

and 10Mbit/s (36.1–95.4% reduction at 99th percentile)
without polling. At moderate data rates, the userland datapath
(AF_XDP) falls between these two extremes, tending towards
AF_PACKET’s median behaviour under stress (with better tail
behaviour). Higher ingest rates lead to lower minimum laten-
cies (i.e., a few packets benefit from batching), but have lim-
ited impact on median XDP latencies (5.5%) and a slight ad-
verse impact on AF_XDP—performance is mainly governed by
the USB polling interval. Overloading ingest (e.g., ≥50Mbit/s)
causes median latencies to increase by 100 × (plot omitted).
Figure 5a shows that, on Intel NUCs, the XDP fast path

offers a 100–150 µs median improvement over the userland
datapath, where latencies improve at higher ingest rates in
both cases. However, at 1Gbit/s XDP’s median–99th laten-
cies increase to 1978.2–2008.7 µs regardless of polling, with
AF_XDP 1.44 × worse (plot omitted). When polling for packets
(fig. 5a), both of GALETTE’s datapaths outperform AF_PACKET,
but exhibit around 2 × the overhead of DPDK.
We see that GALETTE’s dataplanes can sustain traffic on

RPi at 10, 50 and 100Mbit/s for 64, 512 and 1518B pack-
ets respectively (tables I and II). AF_PACKET fails to meet
50Mbit/s for 512B packets (table omitted). NUC is able
to meet 1Gbit/s traffic for all packet sizes and dataplane
designs except AF_PACKET (table III). We see sub-linerate
results here as we include the startup and winddown of traffic
generation—manual testing with Pktgen-DPDK confirms that

Table III
INTEL NUC MACSWAP NF THROUGHPUT AND RESOURCE USE, 64B PACKETS.

Dataplane Ingest Rate (Mbit/s) Throughput (Mbit/s) CPU (%)

IRQ Poll IRQ Poll

Pure XDP 0.1 0.1 0.1 0.5(4) 12.5(3)
1 1.0 1.0 0.5(4) 12.5(2)
10 9.6 9.6 0.6(4) 12.5(3)
50 47.8 48.1 0.5(4) 12.6(3)
100 95.9 96.2 0.4(5) 12.7(3)
1000 744.8(1) 745.0(1) 10.5(5) 23.0(4)

AF_XDP 0.1 0.1 0.1 0.2(4) 12.5(2)
1 1.0 1.0 0.5(4) 12.5(2)
10 9.5 9.6 1.5(4) 12.5(2)
50 47.8 48.1 5.1(9) 12.6(3)
100 95.9 96.2 1.2(5) 12.8(3)
1000 744.8(1) 744.5(22) 21.6(7) 22.7(9)

AF_PACKET 0.1 — 0.1 — 12.5(1)
1 — 1.0 — 12.5(1)
10 — 9.6 — 12.8(4)
50 — 47.8 — 14.0(3)
100 — 95.6(1) — 15.5(4)
1000 — 433.7(92) — 25.0(2)

DPDK 0.1 — 0.1 — 12.5(1)
1 — 1.0 — 12.5(1)
10 — 9.6 — 12.5(1)
50 — 48.1 — 12.5(1)
100 — 96.2 — 12.5(1)
1000 — 745.1 — 12.5(1)

our dataplanes and DPDK sustain 1Gbit/s at peak.
On RPi (IRQ), we see lower like-for-like CPU and power

use as compared with AF_PACKET (table I). For 1518B packets
in the same case, we see that the pure XDP datapath offers
up to 3.1 × CPU reduction versus userland, requiring 7.4%
less power (table II). We interpret this effect as arising from
copying packet contents into UMEM frames, however this
remains lower than AF_PACKET. However, while GALETTE
CPU use is lower than AF_PACKET when polling, we observe
that XDP dataplanes have around 5% higher power use. In
NUC, we see that the fastpath is always more CPU-efficient
for rates beyond 1Mbit/s (table III).
Takeaways: GALETTE is well-suited to non-DPDK capable
devices such as Raspberry Pis, offering better overall perform-
ance in both its datapaths (and lower power/CPU use) than
frameworks like AF_PACKET. Polling offers limited benefits
on the Raspberry Pi, and cannot beat best-of-breed solutions

0.1

1

10

100

0 0.2 0.4 0.6 0.8 1

T
hr
ou

gh
pu

t(
M
bi
t/
s)

P(Expensive NF)

RPi (10Mbit/s)
NUC (100Mbit/s)

RPi↑ (10Mbit/s)
NUC↑ (100Mbit/s)

Figure 6. Throughput degradation as compute-intense NFs are run in the
XDP path. ‘↑’ denotes passing such packets to userland. Expensive NFs
cause significant throughput loss—strongest for RPi—but are alleviated using
GALETTE’s two-tier datapath strategy.

100

1000

10000

100000

1 × 106

1 × 107

0 0.2 0.4 0.6 0.8 1

Pe
rc
en
til
e
La
te
nc
y
(µ
s)

P(Expensive NF)

RPi (1Mbit/s)
NUC (100Mbit/s)

RPi↑ (1Mbit/s)
NUC↑ (100Mbit/s)

Figure 7. 99th percentile latency degradation, as in fig. 6. For RPi, offloading
costly NFs to userland offers 1–2 orders of magnitude improvement.

like DPDK when they are supported—however, it is already
understood that XDP underperforms in this comparison, but
is far more CPU-efficient at lower traffic rates [10, 13] (i.e.,
those of interest in IoT/sensor networks). GALETTE benefits
most from the CPU and power reductions of blocking I/O to
support portable, efficient, in-situ traffic processing.

B. Scheduling expensive NFs
Compute-intense NFs, as hypothesised, significantly harm
median/99th percentile latencies and overall throughputs if
applied in the XDP fast path to even 1% of packets. Figures 6
and 7 show this property for throughput and 99th percentile
latencies respectively on peak traffic for each SBC—RPi
is more adversely affected (having a slower CPU clock),
but unlike NUC even lower traffic rates are impacted (0.5
and 1Mbit/s, plot omitted). Crucially, pushing costly NFs to
userland alleviates this problem, particularly on weaker SBCs
(i.e., a 25.7 × increase in throughput for RPi, 𝑃 = 0.5).
We find the value of additional cores for load balancing

depends on NF complexity. In earlier experiments, we found
for RPi that the split-datapath design could not improve
throughputs beyond pure XDP for cheaper NF chains (i.e.,
bottlenecked by kernel packet handling), while on NUC the
XDP dataplane could already handle all rates with ease in

5.4

5.6

5.8

6

6.2

6.4

6.6

1 2 3 4 5 6 7

T
hr
ou

gh
pu

t(
M
bi
t/
s)

Userland Cores

RPi↑ (10Mbit/s)

70

75

80

85

90

95

NUC↑ (100Mbit/s)

Figure 8. Extra userland cores lead to improved throughput as more packets
(𝑃 = 0.5) require expensive NFs. 64B packets.

spite of having a single queue. In addition, we found there to
be some contention when reading from the separate AF_XDP
sockets in userland which limits the applicability of load-
balancing cheaper NFs in this way. However, more expensive
NFs are a prime candidate for placement over the unused
device cores—we see from fig. 8 that additional threads are
serving as many packets as possible.
Takeaways: The two-tier split datapath design of GALETTE
is key in ensuring that SBCs can provide different quality of
service to packets which require different levels of processing,
and for protecting ‘normal’ traffic from latency spikes and
drops caused by expensive analyses on adversarial flows.

VII. RELATED WORK
SBC dataplanes: P4Pi [11] is an educational platform to run
P4 dataplanes on Rasbperry Pi devices. Its dataplane uses
DPDK on tap devices bridged from the onboard NICs (similar
to our AF_PACKET baseline), and is limited to the simpler
semantics of P4 programs versus our eBPF-plus-native code
strategy. P4Pi and GALETTE have altogether different aims and
are complementary to one another; given our results, P4Pi
might reduce its power costs and latency using (AF_)XDP.
eBPF/XDP dataplanes: Polycube [13] uses a similar hybrid
XDP-userland model to provide SFC in datacentres. While
both GALETTE and Polycube rely on chains of tail-calls
between XDP programs, Miano et al. designate an explicit
userland component per NF. If userland processing is required,
Polycube upcalls packets using per-CPU ring buffers, and
then recirculates packets back to the XDP datapath using tap
devices. GALETTE is instead tailored towards SBC devices. We
use AF_XDP for upcalling due to its ubiquity and robustness—
and never return packets to XDP due to the single XDP thread
offered by SBC hardware. Both frameworks are specialised
toward their target environment (datacentres vs. SBCs).
Morpheus [14] examines how runtime profiling can improve

the performance of eBPF-based dataplanes via profile guided
optimisation. While the improvements it offers would comple-
ment our work, this relies on routinely sending instrumentation
data back to GALETTE’s compile server—and so would require
more in-depth cost/benefit analysis of network overheads.
Shahinfar et al. [23] have seen some performance benefits

in splitting packet processing between XDP and userland via
AF_XDP. We believe that this is due to the same ‘pipeline
parallelism’ that GALETTE takes advantage of.
eBPF in industry: eBPF’s safety, performance, and kernel
integration make it useful in many applications. Cilium [4]
uses XDP to insert security and load balancing functions into
container networks. flowtrackd [34] uses AF_XDP to provide
DDoS attack scrubbing capabilities for Cloudflare CDNs.
Open vSwitch [29] has been redesigned to make use of AF_XDP
for its agility over kernel modules, while load balancers like
Katran [7] are in widespread deployment in Meta.
Rust-based dataplanes: NetBricks [19] installs SFC graphs
of Rust NFs over the DPDK dataplane. It offers effective ab-
stractions for aggregating and processing traffic—however, it
does not provide any mechanisms or support for an eBPF/XDP
dataplane. SafeBricks [21] protects these NFs from a com-
promised kernel using TEEs, however these are absent in
Raspberry Pis and deprecated in consumer Intel CPUs [20].

VIII. CONCLUSION
We have presented GALETTE, an SFC framework designed for
the cheap defence of IoT networks. By carefully considering
the limitations of the XDP framework on SBC hardware, we
have designed and implemented an SFC framework tailored
to making the best use of SBC parallelism while protecting
‘normal’ traffic. We have empirically shown that our design
achieves lower and more consistent latencies on weaker SBC
devices like Raspberry Pis, enabling inexpensive NF installa-
tion in IoT and sensor networks.
Acknowledgements: This work was supported in part by
the PETRAS National Centre of Excellence for IoT Systems
Cybersecurity, via the UK Engineering and Physical Sciences
Research Council [grant EP/S035362/1].

REFERENCES
[1] Manos Antonakakis et al. ‘Understanding the Mirai Botnet’. In: 26th

USENIX Security Symposium, Vancouver, Canada, August 16-18, 2017.
USENIX Association, 2017, pp. 1093–1110.

[2] Tom Barbette et al. ‘Fast Userspace Packet Processing’. In: Pro-
ceedings of the Eleventh ACM/IEEE Symposium on Architectures for
networking and communications systems, ANCS 2015, Oakland, CA,
USA, May 7-8, 2015. IEEE Computer Society, 2015, pp. 5–16.

[3] Marco Spaziani Brunella et al. ‘hXDP: Efficient Software Packet
Processing on FPGA NICs’. In: 14th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2020, Virtual Event,
November 4-6, 2020. USENIX Association, 2020, pp. 973–990.

[4] Cilium Authors. Cilium. Linux Native, API-Aware Networking and
Security for Containers. 2022. URL: https://cilium.io/.

[5] Jonathan Corbet. Accelerating networking with AF_XDP. 9th Apr.
2018. URL: https://lwn.net/Articles/750845/.

[6] DPDK Project. DPDK. 2022. URL: https://www.dpdk.org/.
[7] Facebook Incubator. Katran. A high performance layer 4 load balan-

cer. 2020. URL: https://github.com/facebookincubator/katran.
[8] Matt Fleming. A thorough introduction to eBPF. 2nd Dec. 2017. URL:

https://lwn.net/Articles/740157/.
[9] Yansong Gao et al. ‘Physical unclonable functions’. In: Nature Elec-

tronics 3.2 (Feb. 2020), pp. 81–91. ISSN: 2520-1131.
[10] Toke Høiland-Jørgensen et al. ‘The eXpress data path: fast program-

mable packet processing in the operating system kernel’. In: Proceed-
ings of the 14th International Conference on emerging Networking
EXperiments and Technologies, CoNEXT 2018, Heraklion, Greece,
December 04-07, 2018. ACM, 2018, pp. 54–66.

[11] Sándor Laki et al. ‘P4Pi: P4 on Raspberry Pi for networking educa-
tion’. In: Comput. Commun. Rev. 51.3 (2021), pp. 17–21.

[12] Keegan McAllister. Attacking hardened Linux systems with kernel JIT
spraying. 17th Nov. 2012. URL: http://mainisusuallyafunction.blogspot.
com/2012/11/attacking-hardened-linux-systems-with.html.

[13] Sebastiano Miano et al. ‘A Framework for eBPF-Based Network
Functions in an Era of Microservices’. In: IEEE Trans. Netw. Serv.
Manag. 18.1 (2021), pp. 133–151.

[14] Sebastiano Miano et al. ‘Domain specific run time optimization for
software data planes’. In: ASPLOS ’22: 27th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Lausanne, Switzerland, 28 February 2022 - 4
March 2022. ACM, 2022, pp. 1148–1164.

[15] Microchip Technology Inc. LAN9514/LAN9514i USB 2.0 Hub and
10/100 Ethernet Controller Data Sheet. 2nd Nov. 2016. URL: http :
//ww1.microchip.com/downloads/en/devicedoc/00002306a.pdf.

[16] Robert Tappan Morris et al. ‘The Click modular router’. In: Proceed-
ings of the 17th ACM Symposium on Operating System Principles,
SOSP 1999, Kiawah Island Resort, near Charleston, South Carolina,
USA, December 12-15, 1999. ACM, 1999, pp. 217–231.

[17] Andrii Nakryiko. BPF CO-RE reference guide. 24th Oct. 2021. URL:
https://nakryiko.com/posts/bpf-core-reference-guide/.

[18] Netronome. SmartNIC Overview. 2021. URL: https://www.netronome.
com/products/smartnic/overview/.

[19] Aurojit Panda et al. ‘NetBricks: Taking the V out of NFV’. In: 12th
USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2016, Savannah, GA, USA, November 2-4, 2016. USENIX
Association, 2016, pp. 203–216.

[20] Jimmy Pezzone. Intel’s SGX deprecation impacts DRM and Ultra HD
Blu-ray support. 15th Jan. 2022. URL: https://www.techspot.com/news/
93006-intel-sgx-deprecation-impacts-drm-ultra-hd-blu.html.

[21] Rishabh Poddar et al. ‘SafeBricks: Shielding Network Functions in the
Cloud’. In: 15th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2018, Renton, WA, USA, April 9-11, 2018.
USENIX Association, 2018, pp. 201–216.

[22] Luigi Rizzo. ‘netmap: A Novel Framework for Fast Packet I/O’. In:
2012 USENIX Annual Technical Conference, Boston, MA, USA, June
13-15, 2012. USENIX Association, 2012, pp. 101–112.

[23] Farbod Shahinfar et al. ‘The case for network functions decomposi-
tion’. In: CoNEXT ’21: The 17th International Conference on emerging
Networking EXperiments and Technologies, Virtual Event, Munich,
Germany, December 7 - 10, 2021. ACM, 2021, pp. 475–476.

[24] Kyle A. Simpson and Dimitrios P. Pezaros. ‘Revisiting the Classics:
Online RL in the Programmable Dataplane’. In: 2022 IEEE/IFIP Net-
work Operations and Management Symposium, NOMS 2022, Budapest,
Hungary, April 25-29, 2022. IEEE, 2022, pp. 1–10.

[25] Kyle A. Simpson et al. Galette. URL: https://github.com/FelixMcFelix/
galette.

[26] Kyle A. Simpson et al. ‘Seiðr: Dataplane Assisted Flow Classification
Using ML’. In: IEEE Global Communications Conference, GLOBE-
COM 2020, Virtual Event, December 7-11, 2020. IEEE, 2020, pp. 1–6.

[27] Giuseppe Siracusano et al. ‘Re-architecting Traffic Analysis with
Neural Network Interface Cards’. In: 19th USENIX Symposium on
Networked Systems Design and Implementation, NSDI 2022, Renton,
WA, USA, April 4-6, 2022. USENIX Association, 2022, pp. 513–533.

[28] The Rust Team. Rust Programming Language. 2022. URL: https : / /
www.rust-lang.org/.

[29] William Tu et al. ‘Revisiting the Open vSwitch Dataplane Ten Years
Later’. In: ACM SIGCOMM 2021 Conference, Virtual Event, USA,
August 23-27, 2021. ACM, 2021, pp. 245–257.

[30] Twilio. Electric Imp Secure IoT Connectivity Platform. 2022. URL:
https://www.electricimp.com/.

[31] UK Parliament. Product Security and Telecommunications Infrastruc-
ture Act 2022. 16th Dec. 2022. URL: https://bills.parliament.uk/bills/
3069.

[32] Keith Wiles. Pktgen-DPDK – DPDK-based packet generator. 2022.
URL: https://github.com/pktgen/Pktgen-DPDK.

[33] Jiarong Xing et al. ‘Runtime Programmable Switches’. In: 19th
USENIX Symposium on Networked Systems Design and Implement-
ation, NSDI 2022, Renton, WA, USA, April 4-6, 2022. USENIX
Association, 2022, pp. 651–665.

[34] Omer Yoachimik. flowtrackd: DDoS Protection with Unidirectional
TCP Flow Tracking. 14th July 2020. URL: https://blog.cloudflare.com/
announcing-flowtrackd/.

https://cilium.io/
https://lwn.net/Articles/750845/
https://www.dpdk.org/
https://github.com/facebookincubator/katran
https://lwn.net/Articles/740157/
http://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
http://mainisusuallyafunction.blogspot.com/2012/11/attacking-hardened-linux-systems-with.html
http://ww1.microchip.com/downloads/en/devicedoc/00002306a.pdf
http://ww1.microchip.com/downloads/en/devicedoc/00002306a.pdf
https://nakryiko.com/posts/bpf-core-reference-guide/
https://www.netronome.com/products/smartnic/overview/
https://www.netronome.com/products/smartnic/overview/
https://www.techspot.com/news/93006-intel-sgx-deprecation-impacts-drm-ultra-hd-blu.html
https://www.techspot.com/news/93006-intel-sgx-deprecation-impacts-drm-ultra-hd-blu.html
https://github.com/FelixMcFelix/galette
https://github.com/FelixMcFelix/galette
https://www.rust-lang.org/
https://www.rust-lang.org/
https://www.electricimp.com/
https://bills.parliament.uk/bills/3069
https://bills.parliament.uk/bills/3069
https://github.com/pktgen/Pktgen-DPDK
https://blog.cloudflare.com/announcing-flowtrackd/
https://blog.cloudflare.com/announcing-flowtrackd/

	Introduction
	Contributions

	Background
	Motivation
	Design
	Chain format
	Shared NF API
	Compilation
	Dataplane operation
	Control plane
	Limitations

	Evaluation
	Testbed setup
	Experiments

	Results and Discussion
	Optimal dataplane performance
	Scheduling expensive NFs

	Related Work
	Conclusion

