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Abstract—Real-time, high-speed flow classification is funda-
mental for network operation tasks, including reactive and
proactive traffic engineering, anomaly detection and security
enhancement. Existing flow classification solutions, however, do
not allow operators to classify traffic based on fine-grained,
temporal dynamics due to imprecise timing, often rely on sampled
data, or only work with low traffic volumes and rates. In this
paper, we present Seiðr, a classification solution that: (i) uses
precision timing, (ii) has the ability to examine every packet on
the network, (iii) classifies very high traffic volumes with high
precision. To achieve this, Seiðr exploits the data aggregation
and timestamping functionality of programmable dataplanes.
As a concrete example, we present how Seiðr can be used
together with Machine Learning algorithms (such as CNN, k-NN)
to provide accurate, real-time and high-speed TCP congestion
control classification, separating TCP BBR from its predecessors
with over 88–96 % accuracy and F1-score of 0.864–0.965, while
only using 15.5 MiB of memory in the dataplane.

Index Terms—Flow Classification, Congestion Control, Data-
plane Programming, Machine Learning, P4, CNN, kNN

I . I N T R O D U C T I O N

There has been significant research and development on real-
time analysis of operational Internet traffic. Accurate flow
characterisation (or classification) can drive intrusion detection,
detecting unusual or illegal patterns of network traffic, or to
prioritize traffic for certain customers, to provide path-diversity
as well as to mark Quality of Service (QoS) of various users and
protocols [1], [2]. However, flow classification solutions today
can usually only rely on sampled data provided by routers, such
as sFlow, Netflow, or IPFIX, along with imprecise timing (µs
and ms-level) [3], [4]. While sampled, low-precision telemetry
can be used to classify network traffic based on some flow
properties (such as port and protocol numbers) [5], it cannot
be used to classify based on fine temporal properties (e.g.,
identifying bursty flows and senders that can cause microbursts
and buffer overflow on the network).

On the other hand, full-software solutions for traffic clas-
sification have been proposed by commercial vendors (e.g.,
Barracuda DPI1), the open-source community (e.g., Snort [2],
Zeek (formerly Bro) [6]), and the research community, with
extensible feature sets and algorithms for classification [7].
Unfortunately, these software solutions designed for commodity
hardware do not provide accurate timing of packets, and

1https://www.barracuda.com/glossary/deep-packet-inspection

therefore make certain time-critical events hard or impossible to
detect (e.g., microbursts [8] or congestion control properties [7]).
Moreover, even the most sophisticated software solutions
process packets 10 orders of magnitude slower than current
backbone traffic of large operators, making them unusable for
large-scale operational analysis [9].

At the same time, programming and fast reconfiguration of
network devices is being explored in all types of networks:
datacenter and cloud networks, CDNs and WANs. Specifically,
with the recent developments of generalized dataplanes (e.g., the
Portable Switch Architecture [10]), target devices (e.g., Barefoot
Tofino and Netronome SmartNICs) along with the high-level
programming languages presented for them (e.g., P4 [11]),
operators can now express in-network functionality running on
their devices, including accurate nanosecond-precision packet
timing. However, programming in-network services has its
own challenges (e.g., restricted instruction sets, data types and
memory), prohibiting the implementation of a fully in-network
classification solution.

To solve the aforementioned challenges, we present Seiðr2,
a dataplane assisted flow classification solution. Our design
philosophy of Seiðr keeps functionality where it belongs:
dataplane devices create accurately timestamped, aggregated
data structures for our analysis, and we let a scalable software
stack perform ML-based classification on commodity machines.
As in-network aggregation reduces the data rate by a factor
of ∼740, our solution can analyse aggregated data from a
total rate of 10 Tbit/s original traffic using a single commodity
processing machine.

As a concrete use-case, we look at fine dynamics of TCP
congestion control algorithms. Understanding and classifying
them is important for network providers as inadequate choices
have severe effects on transfer rates, especially in networks
with high bandwidth-delay product [12] and in networks where
multiple congestion control algorithms are used [13]. By
using accurate congestion control diagnostics, operators will be
able to infer sender problems (e.g., backlogged or application-
limited senders), network inefficiencies (e.g., increased path
latency and congestion), as well as receiver issues (e.g., delayed
acknowledgements, small receiver windows) and fairness issues
between delay-based and loss-based algorithms [13].

2Pronounced “SAY-ther”.
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Figure 1. Seiðr’s integration with a PSA-compatible [10] dataplane.

The contributions of this paper are summarized below:

• A flexible dataplane-assisted architecture compatible with
the Portable Switch Architecture (PSA) [10] that al-
lows data aggregation in the form of histograms with
nanosecond-accurate timing (Section II),

• A high-accuracy method for telling apart timer-based (e.g.,
BBR) and cwnd-based TCP flavours using our system
with machine learning algorithms (Section III),

• An extensive evaluation of TCP congestion control classi-
fication using our solution (Section IV).

I I . T E L E M E T RY C R E AT I O N I N T H E D ATA P L A N E

A. Limitations of Programmable Dataplanes

While dataplane programming promises easy reconfiguration
of network devices, it poses some challenges. First, network
devices support only a limited set of operations and control
flows (no loops) without use of platform-specific externs,
and restrict the user to specific primitive data types, i.e., no
floating-point units due to tight hardware constraints. Second,
these devices have limited low-latency memory (on the order of
a few tens of MBs [14]) and do not provide dynamic memory
management. These limitations prohibit complex algorithms
from being implemented, but allow certain restricted solutions,
such as what is presented in DAPPER [15], where the authors
implement a TCP state machine purely in the dataplane.

B. Histogram Generation

Although packet timing information is useful in understanding
network and flow behaviour, without volume or packet rate
reduction it is prohibitively expensive for hosts to handle each
packet. Histogramming acts as the aggregation step which
makes this class of analysis feasible in high-speed networks.
Figure 1 demonstrates how Seiðr, installed as an additional
table in any P4 program, records and transmits inter-arrival time
histograms. The format for these histogram packets is outlined
in fig. 2; we choose to store individual buckets as u16s, and
the number of buckets in any histogram is fixed at compile time.
We set this to 100 buckets per histogram. Packets traverse a
table which requires 3 actions to be implemented:

1) config reads any matched packets as a seidr_cfg_t
of type SET_{ MIN, MAX, DST, SRC, LEN } by using the
P4 parser. These update registers 1–5 in table I, dropping
any matched packets.

header seidr_cfg_t {
bit<8> function;
bit<144> payload;

}

header seidr_t {
bit<128> src_ip;
bit<128> dst_ip;
bit<16> src_port;
bit<16> dst_port;
bit<16> eth_type;
bit<BUCKETS * 16> histo;

}

Figure 2. P4 headers for Seiðr configuration and histograms.

2) measure calculates the inter-arrival time, update per-
flow histograms, and transmits finished histograms to the
correct host. We describe its operation in algorithm 1.

3) pass ignores packets, and is the default action.
Constructing Seiðr in this manner allows the control plane
to install rules to enable/disable runtime reconfiguration as
needed, and to monitor as many or as few flows as desired
(i.e., using wildcard rules, or exact matching).

The PSA does not have any mechanisms for generating
new packets. To circumvent this, any packet which would
complete a histogram is tagged for cloning at the end of the
ingress pipeline, and recirculation at egress (line 21). This
truncated copy returns to Seiðr’s table, where we enable the
relevant headers, change L2/3 fields, and write out the histogram
contents (lines 5–12). The P4 deparser outputs the new protocol
stack at egress, and transmits the histogram UDP packet into
the network. Event-driven architecture proposals [16] may
allow a more natural means of packet generation.

Algorithm 1. Histogram update and transmission.
Data: 5-tuple, P4 metadata, P4 headers, Registers

1 h ← hash(5-tuple);
2 index ← BUCKETS * h;
3 owner ← HistoOwner[h];
4 if metadata.packet_path = RECIRCULATE then
5 headers.tcp.valid ← false;
6 headers.udp.valid ← true;
7 headers.seidr.valid ← true;
8 copy 5-tuple into headers.seidr;
9 rewrite headers.ip, headers.udp using HistoSrc/Dest;

10 headers.seidr.histo ← HistoData[index..];
11 truncate payload;
12 zero out registers: BucketCount, HistoOwner[h],

HistoData[index..];
13 else if owner = 0 or owner = 5-tuple then
14 HistoOwner[h] ← 5-tuple;
15 iat ← LastTimestamp - metadata.mac_ingress_time;
16 if iat ≥ Min and iat ≤ Max then
17 bucket ← BUCKETS * (iat - Min) / (Max -

Min);
18 HistoData[index + bucket] ← HistoData[index +

bucket] + 1;
19 BucketCount[h] ← BucketCount[h] + 1;
20 if BucketCount[h] = Len then
21 mark packet for cloning and recirculation;

In the event of hash collision (line 13), we ignore packets
outside of the tracked flow to ensure that data is accurate. As
later processing and classification directly affect what decisions
are made by operators or automatically taken by a policy
(possibly leading to incorrect flow limits, QoS, etc.), avoiding
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Figure 3. Example dataplane histograms showing visible differences in inter-
arrival times of selected TCP flavours. Our ML solutions are trained to
programmatically identify such differences.

corruption/cross-contamination of operational data is paramount.
To gain collision resistance, Robin Hood hashing could be used
up to a maximum distance in the table, treating a zeroed owner
as empty and an illegal source IP as a tombstone value.

This design allows runtime configuration of all aspects save
for the bucket count; at runtime, the only way to increase bucket
resolution is to examine a smaller region of IATs. While in
theory this could be configured below a maximum compiled into
the firmware, the difficulties introduced in classification/data
processing make this infeasible. Unless using stream-capable
classifiers such as LSTMs [17], changing the input size requires
retraining from scratch since new neuron weights must be added
and structural properties of the input data change. Increasing
the bucket count requires new firmware installation, as many
dataplane P4 implementations cannot allocate variable-length
stores due to the lack of a dynamic allocator.

As an example of dataplane-generated histograms, fig. 3
shows the distribution of inter-arrival times between two TCP
congestion control algorithms. The visible differences are
programmatically identified using our ML algorithms.

C. Accurate, Precise and High-Resolution Timestamping

Precise timestamps are critical when detecting temporal prop-
erties of flow behaviour, such as microbursts or inferring flow
congestion control algorithms. It is especially important in high
speed (100 Gbit/s) networks, where there can be as little as
6.7 ns between packets that need to be analysed. With a Linux-
based software solution (e.g., reading packets from a link with
tcpdump), the Linux kernel can only provide microsecond-level
accuracy with precision in the order of 100 µs [18]. DPDK
improves on this, increasing the accuracy to 100 ns in the
best case [19]. However, today’s dataplane devices (e.g.,
Netronome SmartNICs, NetFPGA SUME) allow nanosecond-
accurate timestamps to be retrieved from the Media Access
Control (MAC) modules with a precision of 10 ns [18], a
timestamp property Seiðr relies upon.

I I I . T C P C O N G E S T I O N C O N T R O L
C L A S S I F I C AT I O N

Figure 3 suggests that a notable use-case for this type of
measurement is congestion control algorithm (CCA) detection.

In a TCP connection, each machine is free to choose the CCA
it uses to send bytes, and thus how it responds to network
congestion signals. This choice is local, and so is invisible to
the other machine (and the network). In datacentre networks,
operators choose these to ensure optimal behaviour. In a
transit network or large WAN however, these hosts (and thus
the CCAs in use) are outside the control of network operators,
which introduces difficulties when CCA interactions lead to
unfairness. Consider the recent (and widespread) introduction
of TCP BBR [12]. BBR is a delay/model-based CCA which
converges on a fair share of bottleneck bandwidth by reducing
its rate if the round-trip time increases, while periodically
attempting to increase send rate to account for path/load
changes. However, BBR traffic can consume 40 % of link
capacity when multiplexed with loss-based CCAs, regardless
of the number of competing flows [13]. When ensuring fair
transit to all flows, this is hardly a desirable outcome; in fact,
it’s one which may frustrate clients or violate SLAs.

A curious property of BBR’s algorithm which sets it apart
from other variants is that packet transmission is timer-based.
send(packet), as defined in the canonical algorithm, asks
that on transmission of a packet, the sender should wait for the
estimated time that packet would take to reach the recipient.
For instance, at an estimated bottleneck bandwidth of 8 Mbit/s,
a 1024 kB packet would hold back the next packet in the flow
until 976.6 µs had elapsed. When packet sizes remain similar
this causes strongly periodic behaviour, while mode switches
in the BBR algorithm cause these periodic bands to shift up or
down accordingly. This effect is stronger than in existing loss-
and delay-based algorithms which remain intrinsically tied to
the notion of a congestion window (where release of buffered
packets follows the receipt of ACK messages). As a result,
timing behaviour of past CCAs may be influenced by (the lack
of) packet pacing, periodic components might be made noisier
by jitter along the return path, or the behaviour of the receiver
might add further noise.

This high-level analysis of BBR gives us a strong feature
to use as the basis for classification: the inter-arrival times
(IATs) for each packet in a flow. We have two options for
processing this for classification: we may use a compressed,
fixed-size representation such as histograms to capture the
aggregate distribution, or we may attempt to capture structural
behaviour by using a variable-length stream of IATs. In
many networks, the data and packet rate reduction offered
by the former is required to make this possible. Indeed, in-
switch aggregation has seen great success in aiding ML for
training [20], and direct execution [21]. We make use of the
following standard classification algorithms on a fixed-size
representation to attempt to single out the CCA in use:
• k-Nearest Neighbours (k-NN). A simple and well-

understood classifier which assigns labels based on the
closest members of the training corpus (i.e., by the L2
metric). Linear memory cost in amount of training data,
and no training cost other than loading all data points,
but capable of learning complex decision boundaries on
fixed-length input.



Table II
C N N A R C H I T E C T U R E F O R 1 0 0 - E N T RY H I S T O G R A M S .

Layer Nodes/Filters Filter Size Output Dimension

Conv2D 32 (3 × 1) (98 × 1 × 32)
MaxPool — (2 × 1) (49 × 1 × 32)
Conv2D 64 (3 × 1) (47 × 1 × 64)
MaxPool — (2 × 1) (23 × 1 × 64)
Conv2D 64 (3 × 1) (21 × 1 × 64)
Flatten — — 1344
Dense 64 — 64

Dense (Softmax) nclasses — nclasses

• Convolutional Neural Networks (CNNs). A neural network
approach which learns convolution kernels to classify fixed-
length data, particularly when recognising spatial features.
Memory cost is fixed for a given architecture irrespective
of training data, with a high training cost.

When examining k-NN classifiers, we measured accuracy
across choices of k ∈ [2, 8]. We found k = 2 to be the most
effective choice with our input data using the L2 metric. Our
CNN architecture is described in table II, using ReLu activation
and 1× 1 stride in convolutional layers unless stated otherwise.
Training occurred over 5 epochs using the Adam optimiser with
categorical cross-entropy as a loss metric, and a batch size of 64
histograms (8 for full sequences due to the smaller data volume).
For BBR vs. Cubic, the complete model consists of 104 898
32-bit floating-point parameters (409.76 KiB), while the full
classification task adds a further 130 parameters (0.51 KiB).

I V. E VA L U AT I O N

We evaluate the performance of Seiðr from several angles.
On classification, we are interested in the accuracy of CCA
detection using IAT histograms, the time taken to train a model,
and the required time to classify a flow. In the 2-class problem,
we investigate whether it is possible to separate TCP BBR from
Cubic using IAT histograms as the input data, while in the
4-class problem we extend this to include Reno and Vegas.
We compare our work against Hagos et al. [7] in this regard.
On deployment, we investigate the bandwidth and memory
requirements imposed by Seiðr.

A. Datasets

We examine synthetic flows modelling bulk data transfer at
various speeds, generated using iPerf33, and processed using
custom P4 firmware. For every pairwise interaction between
TCP BBR, Cubic, Reno, and Vegas, we capture solo and
multiplexed dynamics by running each flow for 3 s, with 2 s of
overlap (i.e., the second flow begins at t = 1 s). We observe that
the first flow always completes slow-start before multiplexing
begins, and by construction we have several unimpeded captures
for every flavour. We do not expect the number/volume of
multiplexed flows to substantially alter captured dynamics (i.e.,
3 flows at 300 Mbit/s and 2 flows at 200 Mbit/s should both have
flows fall to 100 Mbit/s). Flows in one capture are generated
using the same target rate in {100, 200, . . . , 1000}Mbit/s, each
perturbed randomly within ±10 % uniformly. We also control
how this rate limit is applied: wire-limited traffic uses tc

3https://iperf.fr/

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

500 1000 2000 Full

A
cc

ur
ac

y

Sequence Length (packets)

CNN, Application-limited
CNN, Wire-limited

k-NN, Application-limited
k-NN, Wire-limited

Figure 4. Accuracy of k-NN and CNN classifiers when classifying BBR and
Cubic TCP traffic from IAT histograms, trained over various sequence lengths.

in the Linux kernel to apply rate-limiting, while application-
limited traffic uses iPerf’s builtin mechanisms to control send
rate. Application-limited traffic leads to specific behaviour
in BBR and some other flavours, while wire-limited traffic
creates loss events as the rate grows too high. 10 such captures
are recorded for each (CCA1,CCA2, speed, limiter) tuple, and
generated flows are labelled accordingly.

IAT streams are broken down into overlapping sequences
of the required length, before being histogrammed into 100
buckets over 0–1 ms. The use of overlapping sequences extends
the training and testing sets significantly, while ensuring that
larger sequences don’t result in a small training corpus. Cross-
validation occurs on a per-flow basis rather than per-sequence,
i.e., sequences from the same flow must only appear in either
the test or training set to preserve stringent data hygiene and
prevent adjacent sequences from inducing overfitting. All
classifier evaluation which follows uses 4-fold cross-validation.
The data is comprised of 4994 flows (832 in 2-class), or 18–31
million sequences (3.2–5.2 million in 2-class).

B. Experimental Setup

All experiments were executed on Ubuntu 18.04.4 LTS
(GNU/Linux 4.15.0-96-generic x86_64), using a 4-core Intel
Core i7-6700K (clocked at 4.2 GHz) and 32 GB of RAM.
CNN training was performed using Nvidia RTX 2080Ti cards
(11 GB GDDR6 VRAM). For the dataplane, we used multiple
Netronome Agilio CX 2x40GbE SmartNICs using 40GbE
connections between source and destination hosts.

C. Classification Performance

In the 2-class formulation, we observe from fig. 4 that CNN
performance increases slightly with the length of the input
sequence for classifying application-limited traffic. Our CNN-
based detection has a peak F1-score of 0.965 for application-
limited traffic, and 0.894 when wire-limited. This increase
does not extend towards full-sequence histograms, which are
hampered by having 6 orders of magnitude fewer training
samples. While very effective, k-NNs come with significant
memory cost. By design, the entire dataset must be kept in
memory: for length 500, this equates to 1.5 GiB of training data.
Naturally, this is undesirable for many network deployments,
where easy relocation of inference may be key.

Figure 5 shows in the 4-class case that we observe a sharp
loss in classification accuracy, peaking at (59.5 ± 2.0) % for

https://iperf.fr/
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CNNs and (64.5 ± 1.6) % for k-NN. This suggests that IAT
histograms don’t generalise as an effective feature for other
TCP flavours. Exploratory work with LSTMs on IAT streams
confirmed that this persists before aggregation. Likewise,
exclusive pairwise training did not lead to an increase in
accuracy. However, fig. 6 shows that timing information
remains key in separating BBR from its predecessors to a
high degree of accuracy, confirming our hypothesis that its
timer-based (rather than cwnd-based) design allows for this
detection. If this marker were present between loss- and delay-
based variants, then we’d also see high predictive power over
Vegas traffic. Breaking down these confusion matrices by rate
limit type sheds still more light. In fig. 6a, application-limited
data transfers are almost indistinguishable using these metrics
(aside from Vegas), while fig. 6b reveals that IATs hold some
discriminative power for wire-limited Cubic traffic. Note that
4-class k-NN experiments on all but full sequences required
excessive memory and classification time, and so are excluded.
While full-sequence k-NNs outperform all examined CNNs
on this task (respective peak F1-scores 0.697 vs. 0.486), we
observe that these reduce F1BBR from 0.935 to 0.810.

We contrast our work with that of Hagos et al. [7], who
employ CNNs to predict cwnd size for any flow from its stream
of bytes-in-flight measurements. On detection of a loss event
the multiplicative decrease β is measured from estimated cwnds,
from which the CCA may be classified. In identifying TCP
BIC, Cubic, and Reno, they achieve 95 % accuracy, which
outperforms Seiðr on cwnd-based CCAs. Yet their approach
cannot work for detecting BBR. BBR is not based upon the
notion of a sliding congestion window, so there is no parameter
β to infer. Although IAT histograms are suitable for BBR

Table III
T R A I N I N G A N D I N F E R E N C E C O S T S O N O U R T E S T S E RV E R .

Family Online/Subsequence nclasses Train Test Memory

CNN X 2 (43 ± 2) min (49.1 ± 9.2) µs 409.76 KiB
X 4 (243 ± 2) min (50.5 ± 1.7) µs 410.27 KiB
7 2 (1.82 ± 0.47) s (161.3 ± 3.9) µs 409.76 KiB
7 4 (7.94 ± 0.50) s (137.7 ± 1.2) µs 410.27 KiB

k-NN X 2 (21.4 ± 1.2) min (323 ± 69) µs 2.1 GiB
X 4 — — 12.58 GiB
7 2 (0.20 ± 0.06) s (54.0 ± 0.3) µs 332.8 KiB
7 4 (2.20 ± 0.04) s (517.0 ± 5.0) µs 2.0 MiB

detection due to the intrinsic properties of its algorithm, we
envision that our approach could be augmented by using a
negative BBR classification to trigger cwnd estimation. Having
seen that some predictive power is preserved for cwnd-based
CCAs, we expect that this will increase the accuracy of a
universal classifier. It is important, however, that this step be
taken adaptively; this incurs higher resource requirements for
bytes-in-flight tracking and for efficient handling of potential
return-path asymmetry. Seiðr on its own does not add such
overheads or operational complexity, and does not require
sight/detection of cwnd adjustments.

D. Training and Inference Costs

We list typical test and training times for our problem for-
mulations in table III. Training times for k-NN include the
time taken to load and process the entire training set, and
are incurred every time the model is started on a new host.
CNNs trained for online analysis (flow subsequences) achieve
the lowest per-flow inference times, and are increased during
offline analysis due to worse batching and cache behaviour on
the smaller data set. While k-NN is effective in many cases,
we found it to only be computationally viable when offline
(i.e., full-flow histograms), as the entire test data corpus must
remain in memory. A single 4-class cross-validation fold (2000
packets) required 3 days to train and test over the entire dataset,
which we deemed infeasible. In contrast, while online CNNs
take longer to train, they have a considerably lower memory
footprint, the training cost is paid only once, and flows may
be classified in real-time with milliseconds of observations.

E. Switch Resource Usage

The implementation of Seiðr requires an additional table in the
ingress pipeline to update buckets, update configuration, and
rewrite packets. Further code space is required to include a
configuration packet parser. Shared configuration data (registers
1–5) requires 42 B per switch, while each flow requires 224 B
and 248 B to store buckets, counters, previous timestamps, and
active 5-tuples on IPv4/v6 networks respectively. On platforms
which support hash-table structures, this cost scales linearly
with the number of tracked flows. Otherwise, this requires
pre-allocation of an entry for every possible hash value (e.g., 14–
15.5 MiB for a 16 bit hash). This small memory requirement
fits histogram generation to all devices available today.

F. Quantifying In-Network Data Aggregation

Figure 7 demonstrates the reduction in data sent from raw
mirrored packets, to a stream of measured timestamps/IATs,
to Seiðr histograms on an IPv6 network. Timing histograms
naturally provide a larger data reduction as the amount of



1

10

100

1000

10000

100000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

736.8×

C
om

pr
es

si
on

R
at

io
(l

og
)

Sequence Length (packets)

MTU → Stream

13.55

MTU → Histo(100)

9986.84

Jumbo → Stream

80.52

Jumbo → Histo(100)

59328.95

Figure 7. Compression ratio of 100-bucket histograms and timestamp streams
from raw packets on an IPv6 network. As sequence length increases, histograms
provide more of an advantage in compression rate, being 736.8× smaller than
timestamp streams when analysing 2000-packet sequences.

measured packets increases, while a per-packet IAT/telemetry
stream offers no reduction in packet rate. Due to this, 100-
bucket histograms cause a greater data reduction than per-packet
IATs after just 4 packets in a sequence, and consume 736.8×
less volume for 2000-packet sequences.

To make this concrete, 100 Gbit/s traffic is reduced to
10.01 Mbit/s additional switch traffic for MTU-size packets, and
to 1.69 Mbit/s for jumbo frames. IAT streams, by comparison,
reduce to 7.38 Gbit/s (resp. 1.24 Gbit/s). For a flow at
100 Mbit/s, only 30 ms is needed to collect enough packets to
make a classification. Scaling beyond this, packet processing
rates are the bottleneck. As commodity machines and today’s
stream processors have a reasonable upper bound of ∼1M PPS
processing capacity [22], Seiðr could scale up to 1 Tbit/s MTU-
size packet traffic on one machine, which would correspond to
only 333K PPS histogram packets (55.6K PPS if jumbo-size).
Reliably scaling to 10 Tbit/s and beyond requires only that we
increase the histogram sequence length to ≥ 7000 packets.

V. C O N C L U S I O N

We have presented Seiðr, a dataplane assisted flow classification
solution that can be used to detect fine-grained temporal flow
behaviour. We have shown a PSA-compliant way to implement
in-network data aggregation in the form of histograms, while
using nanosecond-precision timestamping. Our in-network
generated histogram datastructure (e.g., on per-flow packet inter-
arrival times) has been presented as the input for various ML
algorithms, including CNN and k-NN. We have shown with our
extensive evaluation that Seiðr can successfully tell apart TCP
CCAs, in particular, it identifies BBR from its predecessors
with over 88–96 % accuracy, while only consuming a maximum
15.5 MiB of dataplane memory. We presented the trade-offs
between training and inference times, memory requirements,
and accuracy in the context of CNN and k-NN classifiers
and shown that Seiðr outperforms prior work by increasing
classification accuracy on novel TCP CCAs, providing the
ability to classify at very high traffic rates (in the order of
10 Tbit/s). Furthermore, we have identified a key temporal
property of BBR which allows its easy detection among other
flows. In the future, we aim to examine the use of Seiðr
towards microburst detection and diagnosis [8] and for the
identification of BBR-like temporal properties of emerging
UDP-based congestion-aware protocols, such as QUIC.
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