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ABSTRACT
Reinforcement learning (RL) is a key tool in data-driven network-

ing for learning to control systems online. While recent research

has shown how to offload machine learning tasks to the dataplane

(reducing processing latency), online learning remains an open

challenge unless the model is moved back to a host CPU, harm-

ing latency-sensitive applications. Our poster introduces OPaL—
On Path Learning—the first work to bring online reinforcement
learning to the dataplane. OPaL makes online learning possible in

SmartNIC/NPU hardware by returning to classical RL techniques—

avoiding neural networks. This simplifies update logic, enabling

online learning, and benefits well from the parallelism common

to SmartNICs. We show that our implementation on Netronome

SmartNIC hardware offers concrete latency improvements over

host execution.

CCS CONCEPTS
•Networks→Data path algorithms;Programmable networks;
• Computing methodologies→ Reinforcement learning.

1 INTRODUCTION
Automatic network optimisation, control, and defence are becoming

commonplace through data-driven techniques such as RL methods,

where every change and its effects improve future decisions made

by an agent. In tandem, P4 [1] and programmable dataplane hard-
ware have inspired explosive growth and interest in the research

community surrounding in-network computation and offloading.

This ecosystem exposes not only runtime reconfigurable packet

processing, but per-packet and per-flow traffic measurement state

that can greatly aid network operation [2].

Machine learning in the dataplane: To process this fine-grained
state both at line rate and at low latency, there has been keen

interest in executingMLmodels in the dataplane [4, 6].Works in this

category, while powerful, operate by converting a pre-trained model

into a suitable representation, such as a binary neural network or

string of match-action tables. These can react to on-device state,

yet the missing piece of the puzzle is learning and updating these

ML analyses online, without deferring to another machine in the

network. This lacuna has yet to be addressed by the community.

Problems of online training: Programmable dataplane hardware,

being designed solely for efficient packet processing, lacks floating-

point arithmetic support, even in the case of more general purpose

NPU-type SmartNICs. Additionally, deep neural network training

relies on backpropagation, can require memorizing many sizeable

replay buffers for RL, and needs many mini-batches of data for

stable training. The natural solution is to pass training data to

a host machine or dedicated accelerator, yet this adds delays in

crossing the PCIe bus, kernel-user handover, and buffering—adding

latency while learning. The above (NIC-suitable) inference schemes
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Figure 1: OPaL brings low-latency, online reinforcement
learning to SoC- and NPU-based SmartNICs. Classical RL
policy methods are the key to making this computationally
feasible.

Config

Count

Values
Atomic

Writeback
Policy

Local
CLS

Local
CTM IMEM

{Rewards, State,
Config, Tile Config,

Policy Data}
(State, Action)

In Ring

HashMap<
Key,
(State, Act),
>

HashMap<
Key,
Reward,
>

Out Ring

Controller

Minion

Minion

Minion

Minion

Minion

Minion

Minion

ME 0

Si
gn

al

Minion++

Minion

Minion

Minion

Minion

Minion

Minion

Minion

ME 1
Si

gn
al

NN
Register

NN
Register

EMEM

OPaL
Cores

Other
Cores
/FUs

...

Figure 2: Parallel policy execution. A single controller deleg-
ates RL computation and updates to manyminion threads,
using a shared atomic writeback.

still must be trained offline, even though their data formats solve

the issue of floating point use. Online learning thus requires careful

choices in sample data formats and the learned function approxim-

ation scheme.

2 OPAL’S DESIGN
OPaL makes RL workloads feasible on SmartNICs by using quant-

ised fixed-point representations of action values, tile-coded policies,

and one-step temporal-difference RL algorithms such as Sarsa [5].
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Figure 3: Tile-coding: actions preferences are aggregated
from disjoint tile queries—a map-reduce problem. To update,
gradients are simply the tiles activated during the forward
pass with no aggregation.

These allow us to evaluate and update policies using only integer
arithmetic, and are computationally simple. We observe that tile

coded inference is a map-reduce problem (fig. 3), and thus over

integers admits a novel wait-free Sarsa RL algorithm (exploiting

the parallelism built in to SmartNICs). While these functions have

lower theoretical model capacity, they do not require batches of

inputs to learn in a stable way, negating the memory needed to

store experience replays or minibatches.

Interacting with OPaL: To prevent packet stalls but maintain

access to fine-grained state, OPaL places RL execution on-NIC, but
off the main packet path, parallel to the main dataplane (fig. 1). The

P4 (or device-specific) dataplane pushes state vectors and reward

measurements to OPaL’s In ring, and pulls output actions when

it is able to, imposing minimal impact on carried traffic for both

bump-in-the-wire deployments and at end-points. Once an action

is enqueued on its Out ring, OPaL updates its policy.

Inference/Updates: State is sent to a set of packet processing

threads, which compute hit tiles from a locally held work set. Dur-

ing inference, these threads atomically add values to a shared action

preference list, while tile-coding guarantees that policy updates

proceed without data races (fig. 2). In the case of our Netronome im-

plementation, these run on lightweight cores known asmicroengines
(MEs)—which could be substituted for suitable FUs on CGRA/FPGA

hardware. Additionally, we have a single-threaded implementa-

tion, Ind, which forgoes this cooperative model to maximise offline

throughput (by having many parallel single-threaded agents).

3 EVALUATION
We compare our implementation of OPaL against a tile-coded RL

agent written in numpy on a powerful host (i7-6700K@4×4.2 GHz),

using the policy dimensions of existing DDoS prevention work [3],

across various quantisation bit depths. Figure 4 shows that our main

design (CoOp) achieves order-of-magnitude latency improvements

over our single-threaded variant (Ind) and a host implementation,

as well as considerably tighter tail behaviour on the SmartNIC.

Note that lower bit depths have higher execution costs due to the

native 32 bit width of Netronome registers. On update times, we

see 63.12 µs at 99.99
th
percentile for a 32 bit policy of this size. We

relate a 15 × latency (CoOp) and 2.82 × offline throughput-per-core

(Ind) improvement in spite of the Netronome’s slower clock speed

(0.29 ×), showing the value of exploiting SmartNIC parallelism.
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(a) OPaL’s CoOp design achieves
consistent, tight latency bounds.
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(b) Tail latencies suffer in hosts—
particularly when oversubscribed.

Figure 4: Cumulative state-action latency plots for OPaL and
host-based execution at different quantisation settings.

4 NEXT STEPS
We intend to measure the effects of our data format and func-

tion approximation choices on overall accuracy and convergence

times for synthetic data, comparing different bit depths against

tile-coded floating-point numbers and more expressive functions

such as neural networks. Moreover, we intend to build OPaL into

ultra low latency control scenarios, such as short-flow prioritisation

or active queue management.
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